Publicación:
Forecasting realized densities: A comparison of historical, risk-neutral, risk-adjusted and sentiment-based transformations (Resumen)

Cargando...
Miniatura
Fecha
2022
Editor/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/closedAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Ciencias
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
This thesis deals with the mathematical models used to forecast future asset prices. Estimating asset prices is arguably one of the most relevant problems for risk managers, central bankers, and investors. Traditional statistical methods rely on point estimates or confidence intervals to estimate future realizations. However, when it comes to analyzing asset prices at a future date, obtaining the full price distribution significantly improves the information available for decision-making. This is particularly relevant in financial prices, which typically exhibit asymmetries, fat tails and other non-normal features. Consequently, estimation methods relying on mean-variance approximations do not appropriately reproduce the real-world characteristics of financial asset prices, leading to biased predictions and inappropriate model choices.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultad de Ciencias
Departamento
Grupo de investigación
Grupo de innovación
Programa de doctorado
Programa de doctorado en ciencias
Cátedra
DOI
Colecciones