Publicación:
Medical images modality classification using discrete Bayesian networks

Cargando...
Miniatura
Fecha
2016-10
Autores
Arias, Jacinto
Martínez-Gómez, Jesús
Gámez, Jose A.
Müller, Henning
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In this paper we propose a complete pipeline for medical image modality classification focused on the application of discrete Bayesian network classifiers. Modality refers to the categorization of biomedical images from the literature according to a previously defined set of image types, such as X-ray, graph or gene sequence. We describe an extensive pipeline starting with feature extraction from images, data combination, pre-processing and a range of different classification techniques and models. We study the expressive power of several image descriptors along with supervised discretization and feature selection to show the performance of discrete Bayesian networks compared to the usual deterministic classifiers used in image classification. We perform an exhaustive experimentation by using the ImageCLEFmed 2013 collection. This problem presents a high number of classes so we propose several hierarchical approaches. In a first set of experiments we evaluate a wide range of parameters for our pipeline along with several classification models. Finally, we perform a comparison by setting up the competition environment between our selected approaches and the best ones of the original competition. Results show that the Bayesian Network classifiers obtain very competitive results. Furthermore, the proposed approach is stable and it can be applied to other problems that present inherent hierarchical structures of classes.
Descripción
Esta es la versión aceptada del artículo. La versión registrada fue publicada por primera vez en Computer Vision and Image Understanding 151 (2016): 61-71, está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/J.CVIU.2016.04.002. This is the accepted version of the article. The registered version was first published in Computer Vision and Image Understanding 151 (2016): 61-71, is available online at the publisher's website: Elsevier, https://doi.org/10.1016/J.CVIU.2016.04.002.
Categorías UNESCO
Palabras clave
Medical image analysis, Visual features extraction, Bayesian networks, Hierarchical classification
Citación
Jacinto Arias, Jesus Martínez-Gómez, Jose A. Gámez, Alba García Seco de Herrera, y Henning Müller. «Medical images modality classification using discrete Bayesian networks». Computer Vision and Image Understanding 151 (2016): 61-71. https://doi.org/10.1016/J.CVIU.2016.04.002
Centro
E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra