Publicación:
A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids

Cargando...
Miniatura
Fecha
2023-12-16
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Nature
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In this study, we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian. By utilizing non-uniform grids, it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest. Overall, our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.
Descripción
The registered version of this article, first published in Communications on Applied Mathematics and Computation, is available online at the publisher's website: Springer Nature, https://doi.org/10.1007/s42967-023-00323-4
La versión registrada de este artículo, publicado por primera vez en Communications on Applied Mathematics and Computation, está disponible en línea en el sitio web del editor: Springer Nature, https://doi.org/10.1007/s42967-023-00323-4
Categorías UNESCO
Palabras clave
meshless method, fractional differential equations, caputo fractional derivative
Citación
A.M. Vargas, A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids, Communications on Applied Mathematics and Computation https://doi.org/10.1007/s42967-023-00323-4
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra