Publicación:
Evaporation-driven solutocapillary flow of thin liquid films over curved substrates

Cargando...
Miniatura
Fecha
2019-03-13
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Physical Society
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Evaporative loss of a volatile solvent can induce concentration inhomogeneities that give rise to spatial gradients in surface tension and subsequent solutocapillary Marangoni flows. This phenomenon is studied in the context of ultrathin liquid films resting atop curved convex substrates in contact with a fluid reservoir. Experiments are conducted with low-molecular-weight polydimethylsiloxane (silicone oil) mixtures composed of a volatile solvent and trace amounts of a nonvolatile solute. A theoretical model based on the thin-film approximation is developed, incorporating the effects of evaporative mass loss, gravity, capillarity, van der Waals forces, species diffusion, and Marangoni stresses. The spatiotemporal evolution of this system is studied by modulating the rate of evaporation of the volatile species and the bulk solute volume fraction in the mixture. The experiments and accompanying numerical simulations reveal that both Marangoni stresses and stabilizing van der Waals interactions between the substrate and the free surface can induce flow reversal and film regeneration. Their relative contribution is modulated by the solutocapillary Marangoni number, which is proportional to the bulk concentration of nonvolatile species in the mixture. Furthermore, it is revealed that increasing the rate of evaporation enhances the volumetric flow rate from thicker, solvent-rich areas towards thinner, solute-rich regions of the film. Although quantitative differences between the theory and the experiments are observed within certain ranges of the controlled parameters, the model qualitatively reproduces the flow regimes observed in the experiments and elucidates the complex interplay among the various physical forces.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultad de Ciencias
Departamento
Física Fundamental
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra