Publicación: Parabolic equations with natural growth approximated by nonlocal equations
dc.contributor.author | Leonori, Tommaso | |
dc.contributor.author | Molino, Alexis | |
dc.contributor.author | Segura De León, Sergio | |
dc.contributor.orcid | https://orcid.org/0000-0002-0848-4463 | |
dc.contributor.orcid | https://orcid.org/0000-0003-2819-7282 | |
dc.contributor.orcid | https://orcid.org/0000-0002-8515-7108 | |
dc.date.accessioned | 2024-11-20T07:18:40Z | |
dc.date.available | 2024-11-20T07:18:40Z | |
dc.date.issued | 2021 | |
dc.description.abstract | en | |
dc.description.abstract | In this paper, we study several aspects related with solutions of nonlocal problems whose prototype is {u(t) = integral N-R J (x - y)(u(y, t) u( x, t))g (u(y , t) u( x, t))dy in Omega x (0, T), u(x, 0) = u(0)(x) in Omega, where we take, as the most important instance, g(s) similar to 1 + mu/2 s/1+mu(2)s(2) with mu is an element of R as well as mu(0)is an element of L-1 (Omega), J is a smooth symmetric function with compact support and S2 is either a bounded smooth subset of R-N, with nonlocal Dirichlet boundary condition, or RN itself. The results deal with existence, uniqueness, comparison principle and asymptotic behavior. Moreover, we prove that if the kernel is resealed in a suitable way, the unique solution of the above problem converges to a solution of the deterministic Kardar Parisi Zhang equation. | |
dc.description.version | versión final | |
dc.identifier.citation | Leonori, T., Molino, A., Segura De León, S. ; Parabolic equations with natural growth approximated by nonlocal equations (2021) Communications in Contemporary Mathematics, 23 (1), art. no. 1950088. : http://doi.org/10.1142/S0219199719500883 | |
dc.identifier.doi | https://doi.org/10.1142/S0219199719500883 | |
dc.identifier.issn | 0219-1997; e-ISSN: 1793-6683 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24435 | |
dc.journal.issue | 1 | |
dc.journal.title | Communications in Contemporary Mathematics | |
dc.journal.volume | 23 | |
dc.language.iso | en | |
dc.publisher | World Scientific | |
dc.relation.center | Facultades y escuelas::Facultad de Ciencias | |
dc.relation.department | Matemáticas Fundamentales | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.subject.keywords | Nonlocal problems | en |
dc.subject.keywords | KPZ equation | en |
dc.subject.keywords | nonlinear parabolic equation | en |
dc.subject.keywords | sasymptotic behavior of solutions | en |
dc.title | Parabolic equations with natural growth approximated by nonlocal equations | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Parabolic equations_Leonori_T.pdf
- Tamaño:
- 416.69 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: