Publicación:
Logic replicant: a new machine learning algorithm for multiclass classification in small datasets

dc.contributor.authorCorral, Pedro
dc.contributor.authorCenteno Sánchez, Roberto
dc.contributor.authorFresno Fernández, Víctor Diego
dc.date.accessioned2025-11-28T18:22:28Z
dc.date.available2025-11-28T18:22:28Z
dc.date.issued2025-04-11
dc.descriptionThe registered version of this article, first published in “Machine Learning. Science and Technology. 6(2): 25012 (2025)", is available online at the publisher's website: IOP Publishing , https://DOI 10.1088/2632-2153/adc86e
dc.descriptionLa versión registrada de este artículo, publicado por primera vez en ““Machine Learning. Science and Technology. 6(2): 25012 (2025)", está disponible en línea en el sitio web del editor: IOP Publishing , https://DOI 10.1088/2632-2153/adc86e
dc.description.abstractMulticlass classification with small datasets often presents a significant challenge for conventional machine learning (ML) algorithms, predicting with an accuracy affected by this context of data scarcity. To remedy this, this papers presents a novel ML model based on a differentiable deterministic finite-state machine (DFSM) that improves the prediction performance compared with state-of-the-art multiclass classifiers applied in this ambit of small data per class. The proposed model uses a logic-arithmetic function that replicates the inherent classification logic of the problem rather than finding patterns of feature similarity. Our algorithm, called logic replicant, allows to learn problems that other classification models cannot. As the logic replicant is a DFSM it can learn any combinational logic, but it goes beyond this point learning other types of problems such as handwritten-digit recognition, and the detection of mice with Down syndrome based on the presence of 77 proteins. Our ML algorithm is also easy to interpret using quantitative diagrams, in comparison to less interpretable algorithms such as artificial neural networks, random forest, and others. The results obtained with different data sets related to math, physics, biology and image recognition show that our design based on a logic-arithmetic function and being a DFSM improves the generalisation capacity (better prediction accuracy) of the logic replicant compared to other state-of-the-art ML approaches.en
dc.description.versionversión publicada
dc.identifier.citationPedro Corral et al 2025 Mach. Learn.: Sci. Technol. 6 025012
dc.identifier.doihttps://doi.org/10.1088/2632-2153/adc86e
dc.identifier.issn2632-2153
dc.identifier.urihttps://hdl.handle.net/20.500.14468/30969
dc.journal.issue2
dc.journal.titleMachine Learning: Science and Technology
dc.journal.volume6
dc.language.isoen
dc.page.final33
dc.page.initial1
dc.publisherIOP Publishing
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject1203.02 Lenguajes algorítmicos
dc.subject.keywordslogic replicanten
dc.subject.keywordsexplainable machine learning algorithmen
dc.subject.keywordsgraphical interpretationen
dc.subject.keywordsnew machine learning modelen
dc.subject.keywordssmall datasetsen
dc.subject.keywordsimproved predictionsen
dc.titleLogic replicant: a new machine learning algorithm for multiclass classification in small datasetsen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublicationf724984c-01b1-4e8d-810e-1b107c938615
relation.isAuthorOfPublication80cd3492-0ff8-4c8e-a904-2858623c7fc1
relation.isAuthorOfPublication.latestForDiscoveryf724984c-01b1-4e8d-810e-1b107c938615
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Corral_2025_Mach._Learn.__Sci._Technol._6_0_VICTOR DIEGO FRESNO.pdf
Tamaño:
1.68 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: