Publicación:
Solving a reaction-di usion system with chemotaxis and non-local terms using Generalized Finite Di erence Method. Study of the convergence

dc.contributor.authorBenito Muñoz, Juan J.
dc.contributor.authorGarcía, Ángel
dc.contributor.authorGavete, Luis
dc.contributor.authorNegreanu, Mihaela
dc.contributor.authorUreña, Francisco
dc.contributor.authorVargas Ureña, Antonio Manuel
dc.date.accessioned2025-01-10T10:56:04Z
dc.date.available2025-01-10T10:56:04Z
dc.date.issued2021-06
dc.descriptionThis is a Submitted Manuscript of an article published by Elsevier in "Journal of Computational and Applied Mathematics Volume 389, 113325", available at: https://doi.org/10.1016/j.cam.2020.113325
dc.descriptionEste es el manuscrito enviado del artículo publicado por Elsevier en "Journal of Computational and Applied Mathematics Volume 389, 113325", disponible en línea: https://doi.org/10.1016/j.cam.2020.113325
dc.description.abstractIn this paper a parabolic–parabolic chemotaxis system of PDEs that describes the evolution of a population with non-local terms is studied. We derive the discretization of the system using the meshless method called Generalized Finite Difference Method. We prove the conditional convergence of the solution obtained from the numerical method to the analytical solution in the two-dimensional case. Several examples of the application are given to illustrate the accuracy and efficiency of the numerical method. We also present two examples of a parabolic–elliptic model, as generalized by the parabolic–parabolic system addressed in this paper, to show the validity of the discretization of the non-local terms.en
dc.description.versionversión original
dc.identifier.citationJ.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas, Solving a reaction–diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence, Journal of Computational and Applied Mathematics Volume 389, 2021, 113325. doi: https://doi.org/10.1016/j.cam.2020.113325
dc.identifier.doihttps://doi.org/10.1016/j.cam.2020.113325
dc.identifier.issn0377-0427 | eISSN 1879-1778
dc.identifier.urihttps://hdl.handle.net/20.500.14468/25178
dc.journal.titleJournal of Computational and Applied Mathematics
dc.journal.volume389
dc.language.isoen
dc.publisherElsevier
dc.relation.centerFacultades y escuelas::E.T.S. de Ingenieros Industriales
dc.relation.departmentMatemática Aplicada I
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject12 Matemáticas
dc.subject.keywordsChemotaxis systemen
dc.subject.keywordsGeneralized Finite Di erenceen
dc.subject.keywordsMeshless methoden
dc.subject.keywordsAsymptotic stabilityen
dc.titleSolving a reaction-di usion system with chemotaxis and non-local terms using Generalized Finite Di erence Method. Study of the convergenceen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication13299822-df2d-4601-91fe-82bc69ae16c4
relation.isAuthorOfPublication6d700201-394b-4442-b0f1-dbe2a6703081
relation.isAuthorOfPublication.latestForDiscovery13299822-df2d-4601-91fe-82bc69ae16c4
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
NonlocalGFDM_ANTONIO MANUEL VARGAS.pdf
Tamaño:
1.38 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: