Publicación: Solving a reaction-di usion system with chemotaxis and non-local terms using Generalized Finite Di erence Method. Study of the convergence
dc.contributor.author | Benito Muñoz, Juan J. | |
dc.contributor.author | García, Ángel | |
dc.contributor.author | Gavete, Luis | |
dc.contributor.author | Negreanu, Mihaela | |
dc.contributor.author | Ureña, Francisco | |
dc.contributor.author | Vargas Ureña, Antonio Manuel | |
dc.date.accessioned | 2025-01-10T10:56:04Z | |
dc.date.available | 2025-01-10T10:56:04Z | |
dc.date.issued | 2021-06 | |
dc.description | This is a Submitted Manuscript of an article published by Elsevier in "Journal of Computational and Applied Mathematics Volume 389, 113325", available at: https://doi.org/10.1016/j.cam.2020.113325 | |
dc.description | Este es el manuscrito enviado del artículo publicado por Elsevier en "Journal of Computational and Applied Mathematics Volume 389, 113325", disponible en línea: https://doi.org/10.1016/j.cam.2020.113325 | |
dc.description.abstract | In this paper a parabolic–parabolic chemotaxis system of PDEs that describes the evolution of a population with non-local terms is studied. We derive the discretization of the system using the meshless method called Generalized Finite Difference Method. We prove the conditional convergence of the solution obtained from the numerical method to the analytical solution in the two-dimensional case. Several examples of the application are given to illustrate the accuracy and efficiency of the numerical method. We also present two examples of a parabolic–elliptic model, as generalized by the parabolic–parabolic system addressed in this paper, to show the validity of the discretization of the non-local terms. | en |
dc.description.version | versión original | |
dc.identifier.citation | J.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas, Solving a reaction–diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence, Journal of Computational and Applied Mathematics Volume 389, 2021, 113325. doi: https://doi.org/10.1016/j.cam.2020.113325 | |
dc.identifier.doi | https://doi.org/10.1016/j.cam.2020.113325 | |
dc.identifier.issn | 0377-0427 | eISSN 1879-1778 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/25178 | |
dc.journal.title | Journal of Computational and Applied Mathematics | |
dc.journal.volume | 389 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingenieros Industriales | |
dc.relation.department | Matemática Aplicada I | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.subject.keywords | Chemotaxis system | en |
dc.subject.keywords | Generalized Finite Di erence | en |
dc.subject.keywords | Meshless method | en |
dc.subject.keywords | Asymptotic stability | en |
dc.title | Solving a reaction-di usion system with chemotaxis and non-local terms using Generalized Finite Di erence Method. Study of the convergence | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 13299822-df2d-4601-91fe-82bc69ae16c4 | |
relation.isAuthorOfPublication | 6d700201-394b-4442-b0f1-dbe2a6703081 | |
relation.isAuthorOfPublication.latestForDiscovery | 13299822-df2d-4601-91fe-82bc69ae16c4 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- NonlocalGFDM_ANTONIO MANUEL VARGAS.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: