Publicación: W01,1 -solutions for elliptic problems having gradient quadratic lower order terms
No hay miniatura disponible
Fecha
2013-04-10
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Nature
Resumen
In this paper we deal with solutions of problems of the type (Formula presented). where 0 < α ≤ a(x) ≤ β, {pipe}b(x){pipe} ≤ γ, γ > 0, f ∈ L2 (Ω) and Ω is a bounded subset of ℝN with N ≥ 3. We prove the existence of at least one solution for such a problem in the space W01,1 (Ω) ∩ L2 (Ω) if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: (Formula presented). where in this case a(x) ≡ b(x) = α > 0.
Descripción
Categorías UNESCO
Palabras clave
Nonlinear elliptic equations, W 1,1 0 (Ω) solutions, Quadratic gradient terms
Citación
Arcoya, D., Boccardo, L. & Leonori, T. -solutions for elliptic problems having gradient quadratic lower order terms. Nonlinear Differ. Equ. Appl. 20, 1741–1757 (2013). https://doi.org/10.1007/s00030-013-0228-z
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Matemáticas Fundamentales