Publicación:
Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review

dc.contributor.authorCrespo, Alicia
dc.contributor.authorBarreneche, Camila
dc.contributor.authorIbarra Mollá, Mercedes
dc.contributor.authorPlatzer, Werner
dc.contributor.orcidhttps://orcid.org/0000-0003-4616-0221
dc.contributor.orcidhttps://orcid.org/0000-0003-3636-3180
dc.date.accessioned2024-11-29T08:39:37Z
dc.date.available2024-11-29T08:39:37Z
dc.date.issued2019-11
dc.descriptionEste es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Solar Energy, 192, 3-34, está disponible en línea en el sitio web del editor: https://doi.org/10.1016/j.solener.2018.06.101
dc.description.abstractSolar thermal energy has the potential to cover the heat demands of industrial processes. However, there may be a time mismatch between energy supplied by the solar field and the process demand. In this case, a thermal energy storage (TES) allows the use of heat at hours without solar irradiation available. Thermal energy storage (TES) for solar hot water or heating systems using low temperatures have been optimized since many decades and are in a mature stage. Developments at high temperatures (above 200 °C) for CSP applications have also been deeply studied. However, until this present paper, limited attention has been paid to TES for solar thermal industrial applications at medium-high temperatures (120 - 400°C), where there is a potentially huge demand. When discussing TES several aspects have to be discussed: the energy demand that TES is going to be designed to supply, the material where the energy will be stored and the performance of the TES system which includes not only the material but also tanks, piping and connections. In this review, food, brewery and chemical industries were identified as the industries with higher potential in which TES and solar energy could be integrated. Heat integration methodologies have been reviewed to optimize the use of the solar energy by the industrial processes. Regarding the material, latent heat storage or phase change materials (PCM) were selected because they are a very promising type of storage to be integrated in thermal industrial processes, although the state of the art of latent heat thermal storage (LHTES) systems is still far from broad commercialization. Until now, no reviews of latent heat storage for industrial applications at medium-high temperatures (120 - 400 °C) have been published. Therefore, literature related to PCM and LHS systems using PCM materials to be used in industrial thermal processes is here reviewed in order to have a general overview of the available technologies for their integration together with solar thermal energy in industrial processes at both experimental and numerical level. More than 100 potential PCMs for heat storage applications in the range of temperatures 120 - 400 °C have been found. Inorganic eutectic compositions are the group with more potentially available PCM for these applications, with values of heat of fusion between 74 and 535 kJ/kg. Finally, the works related to the performance of the system from the experimental and modelling point of view were presented. The review of experimental TES systems which include PCM in the studied range of temperatures 120 - 400 °C showed that most of the experimental set-ups were developed for direct steam generation for CSP applications. Regarding numerical modelling, the type of configuration more simulated is the shell and tube configuration.en
dc.description.versionversión original
dc.identifier.citationCrespo, A., Barreneche, C., Ibarra, M., & Platzer, W. (2019). Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review. Solar Energy, 192, 3-34. https://doi.org/10.1016/J.SOLENER.2018.06.101 Crespo, A., Barreneche, C., Ibarra, M., & Platzer, W. (2019). Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review. Solar Energy, 192, 3-34. https://doi.org/10.1016/J.SOLENER.2018.06.101
dc.identifier.doihttps://doi.org/10.1016/j.solener.2018.06.101
dc.identifier.issn0038-092X; eISSN: 1471-1257
dc.identifier.urihttps://hdl.handle.net/20.500.14468/24578
dc.journal.titleSolar Energy
dc.journal.volume192
dc.language.isoen
dc.page.final34
dc.page.initial3
dc.publisherElsevier
dc.relation.centerFacultades y escuelas::E.T.S. de Ingenieros Industriales
dc.relation.departmentIngeniería Energética
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject33 Ciencias Tecnológicas::3322 Tecnología energética
dc.subject.keywordsPhase change materialsen
dc.subject.keywordsthermal industrial processesen
dc.subject.keywordssolar process heaten
dc.subject.keywordsmedium-high temperaturesen
dc.titleLatent thermal energy storage for solar process heat applications at medium-high temperatures – A reviewen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
person.familyNameIbarra Mollá
person.givenNameMercedes
relation.isAuthorOfPublicationf8b8cb43-4a9e-4e7b-8071-7bcfb9b60864
relation.isAuthorOfPublication.latestForDiscoveryf8b8cb43-4a9e-4e7b-8071-7bcfb9b60864
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Crespo_Ibarra_ReviewPCM.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: