Publicación:
Cloud Implementation of Extreme Learning Machine for Hyperspectral Image Classification

Cargando...
Miniatura
Fecha
2023
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
IEEE
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Classifying remotely sensed hyperspectral images (HSIs) became a computationally demanding task given the extensive information contained throughout the spectral dimension. Furthermore, burgeoning data volumes compound inherent computational and storage challenges for data processing and classification purposes. Given their distributed processing capabilities, cloud environments have emerged as feasible solutions to handle these hurdles. This encourages the development of innovative distributed classification algorithms that take full advantage of the processing capabilities of such environments. Recently, computational-efficient methods have been implemented to boost network convergence by reducing the required training calculations. This letter develops a novel cloud-based distributed implementation of the extreme learning machine ( CC-ELM ) algorithm for efficient HSI classification. The proposal implements a fault-tolerant and scalable computing design while avoiding traditional batch-based backpropagation. CC-ELM has been evaluated over state-of-the-art HSI classification benchmarks, yielding promising results and proving the feasibility of cloud environments for large remote sensing and HSI data volumes processing. The code available at https://github.com/mhaut/scalable-ELM-HSI
Descripción
The registered version of this article, first published in “IEEE Geoscience and Remote Sensing Letters, vol. 20, 2023", is available online at the publisher's website: IEEE, https://doi.org/10.1109/LGRS.2023.3295742 La versión registrada de este artículo, publicado por primera vez en “IEEE Geoscience and Remote Sensing Letters, vol. 20, 2023", está disponible en línea en el sitio web del editor: IEEE, https://doi.org/10.1109/LGRS.2023.3295742
Categorías UNESCO
Palabras clave
yraining, hyperspectral imaging, cloud computing, classification algorithms, scalability, proposals, cluster computing
Citación
J. M. Haut, S. Moreno-Álvarez, E. Moreno-Ávila, V. A. Ayma, R. Pastor-Vargas and M. E. Paoletti, "Cloud Implementation of Extreme Learning Machine for Hyperspectral Image Classification," in IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, 2023, Art no. 5506905, doi: 10.1109/LGRS.2023.3295742
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra