Publicación:
A unified concept of approximate and quasi efficient solutions and associated subdifferentials in multiobjective optimization

dc.contributor.authorJiménez, B.
dc.contributor.authorLuc, D. T.
dc.contributor.authorNovo, V.
dc.contributor.authorHuerga Pastor, Lidia
dc.date.accessioned2024-05-20T11:46:50Z
dc.date.available2024-05-20T11:46:50Z
dc.date.issued2020-11-18
dc.description.abstractIn this paper, we introduce some new notions of quasi efficiency and quasi proper efficiency for multiobjective optimization problems that reduce to the most important concepts of approximate and quasi efficient solutions given up to now. We establish main properties and provide characterizations for these solutions by linear and nonlinear scalarizations. With the help of quasi efficient solutions, a generalized subdifferential of a vector mapping is introduced, which generates a number of approximate subdifferentials frequently used in optimization in a unifying way. The generalized subdifferential is related to the classical subdifferential of real functions by the method of scalarization. An application of generalized subdifferential to express optimality conditions for quasi efficient solutions is also given.en
dc.description.versionversión final
dc.identifier.doihttp://doi.org/10.1007/s10107-020-01597-9
dc.identifier.issn1436-4646
dc.identifier.urihttps://hdl.handle.net/20.500.14468/12544
dc.journal.titleMathematical Programming
dc.journal.volume189
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.centerE.T.S. de Ingenieros Industriales
dc.relation.departmentMatemática Aplicada I
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject.keywordsMultiobjective optimization
dc.subject.keywordsQuasi efficiency
dc.subject.keywordsLinear scalarization
dc.subject.keywordsNonlinear scalarization
dc.subject.keywordsVector subdifferential
dc.titleA unified concept of approximate and quasi efficient solutions and associated subdifferentials in multiobjective optimizationes
dc.typejournal articleen
dc.typeartículoes
dspace.entity.typePublication
relation.isAuthorOfPublication6ad1603b-ae33-458c-b909-a0d8b52cbcd9
relation.isAuthorOfPublication.latestForDiscovery6ad1603b-ae33-458c-b909-a0d8b52cbcd9
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Huerga_Pastor_Lidia_MathProg_2021.pdf
Tamaño:
373.47 KB
Formato:
Adobe Portable Document Format