Publicación: A domain-independent, transferable and timely analysis approach to assess student collaboration
dc.contributor.author | Rodríguez Anaya, Antonio | |
dc.contributor.author | González Boticario, Jesús | |
dc.date.accessioned | 2025-09-12T12:21:01Z | |
dc.date.available | 2025-09-12T12:21:01Z | |
dc.date.issued | 2013 | |
dc.description | The registered version of this article, first published in "International Journal on Artificial Intelligence Tools, 22(04), 1350020", is available online at the publisher's website: https://doi.org/10.1142/S0218213013500206 | |
dc.description | La versión registrada de este artículo, publicado por primera vez en "International Journal on Artificial Intelligence Tools, 22(04), 1350020", está disponible en línea en el sitio web del editor: https://doi.org/10.1142/S0218213013500206 | |
dc.description.abstract | Collaborative learning environments require intensive, regular and frequent analysis of the increasing amount of interaction data generated by students to assess that collaborative learning takes place. To support timely assessments that may benefit students and teachers the method of analysis must provide meaningful evaluations while the interactions take place. This research proposes machine learning-based techniques to infer the relationship between student collaboration and some quantitative domain-independent statistical indicators derived from large-scale evaluation analysis of student interactions. This paper (i) compares a set of metrics to identify the most suitable to assess student collaboration, (ii) reports on student evaluations of the metacognitive tools that display collaboration assessments from a new collaborative learning experience and (iii) extends previous findings to clarify modeling and usage issues. The advantages of the approach are: (1) it is based on domain-independent and generally observable features, (2) it provides regular and frequent data mining analysis with minimal teacher or student intervention, thereby supporting metacognition for the learners and corrective actions for the teachers, and (3) it can be easily transferred to other e-learning environments and include transferability features that are intended to facilitate its usage in other collaborative and social learning tools. | en |
dc.description.version | versión publicada | |
dc.identifier.citation | Anaya, A. R. and Boticario, J. G. (2013). A domain-independent, transferable and timely analysis approach to assess student collaboration. International Journal on Artificial Intelligence Tools, 22(04), 1350020. https://doi.org/10.1142/s0218213013500206 | |
dc.identifier.doi | https://doi.org/10.1142/S0218213013500206 | |
dc.identifier.issn | 0218-2130 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/30049 | |
dc.journal.issue | 4 | |
dc.journal.title | International Journal on Artificial Intelligence Tools | |
dc.journal.volume | 22 | |
dc.language.iso | en | |
dc.publisher | World Scientific Publishing | |
dc.relation.center | E.T.S. de Ingeniería Informática | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/deed.es | |
dc.subject | 3304 Tecnología de los ordenadores | |
dc.subject.keywords | data mining | en |
dc.subject.keywords | computer supported collaboration | en |
dc.subject.keywords | machine learning | en |
dc.subject.keywords | e-learning | en |
dc.title | A domain-independent, transferable and timely analysis approach to assess student collaboration | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 98e16ab9-3684-456b-a44c-cd5f9c8fd5bb | |
relation.isAuthorOfPublication | e067a1f1-6036-4974-a582-85b556587d18 | |
relation.isAuthorOfPublication.latestForDiscovery | 98e16ab9-3684-456b-a44c-cd5f9c8fd5bb |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- anaya2013_A domain-independent transferable a_JESUS GONZALEZ BOTIC.pdf
- Tamaño:
- 650.42 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: