Publicación: Complex Ginzburg–Landau Equation with Generalized Finite Differences
Cargando...
Fecha
2020-12-20
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Resumen
In this paper we obtain a novel implementation for irregular clouds of nodes of the meshless method called Generalized Finite Difference Method for solving the complex Ginzburg–Landau equation. We derive the explicit formulae for the spatial derivative and an explicit scheme by splitting the equation into a system of two parabolic PDEs. We prove the conditional convergence of the numerical scheme towards the continuous solution under certain assumptions. We obtain a second order approximation as it is clear from the numerical results. Finally, we provide several examples of its application over irregular domains in order to test the accuracy of the explicit scheme, as well as comparison with other numerical methods.
Descripción
La versión registrada de este artículo, publicado por primera vez en Mathematics. 2020; 8(12):2248, está disponible en línea en el sitio web del editor: https://doi.org/10.3390/math8122248
The copyrighted version of this article, first published in Mathematics. 2020; 8(12):2248, is available online at the publisher's website: https://doi.org/10.3390/math8122248
Categorías UNESCO
Palabras clave
Ginzburg–Landau equation, parabolic-parabolic systems, generalized finite difference method
Citación
Salete E, Vargas AM, García Á, Negreanu M, Benito JJ, Ureña F. Complex Ginzburg–Landau Equation with Generalized Finite Differences. Mathematics. 2020; 8(12):2248. https://doi.org/10.3390/math8122248
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Ingeniería de Construcción y Fabricación