Publicación:
Large solutions to quasilinear problems involving the p-Laplacian as p diverges

dc.contributor.authorBuccheri, Stefano
dc.contributor.authorLeonori, Tommaso
dc.date.accessioned2024-11-20T06:48:05Z
dc.date.available2024-11-20T06:48:05Z
dc.date.issued2021-01-18
dc.description.abstractIn this paper we deal with large solutions to {u-Δpu+β|∇u|q=finΩ,u(x)=+∞on∂Ω,where Ω ⊂ RN , with N≥ 1 , is a smooth, open, connected, and bounded domain, p≥ 2 , β> 0 , p- 1 < q≤ p and f∈ C(Ω) ∩ L∞(Ω). We are interested in studying their behavior as p diverges. Our main result states that, if, in some sense, the domain Ω is large enough, such solutions converge locally uniformly to a limit function that turns out to be a large solution of a suitable limit equation (that involves the ∞-Laplacian). Otherwise, if Ω is small, we have a complete blow-up. en
dc.description.versionversión final
dc.identifier.citationBuccheri, S., Leonori, T. Large solutions to quasilinear problems involving the p-Laplacian as p diverges. Calc. Var. 60, 30 (2021). https://doi.org/10.1007/s00526-020-01883-6
dc.identifier.doihttps://doi.org/10.1007/s00526-020-01883-6
dc.identifier.issn0944-2669; e-ISSN: 1432-0835
dc.identifier.urihttps://hdl.handle.net/20.500.14468/24434
dc.journal.issue30
dc.journal.titleCalculus of Variations and Partial Differential Equations
dc.journal.volume60
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.centerFacultad de Ciencias
dc.relation.departmentMatemáticas Fundamentales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject12 Matemáticas
dc.titleLarge solutions to quasilinear problems involving the p-Laplacian as p divergesen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Large solutions_Leonori.pdf
Tamaño:
412.93 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: