Publicación:
An OCR Post-Correction Approach Using Deep Learning for Processing Medical Reports

dc.contributor.authorKarthikeyan, Srinidhi
dc.contributor.authorGarcía Seco de Herrera, Alba
dc.contributor.authorDoctor, Faiyaz
dc.contributor.authorMirza, Asim
dc.contributor.orcidhttps://orcid.org/0000-0001-6863-0760
dc.contributor.orcidhttps://orcid.org/0000-0002-6509-5325
dc.contributor.orcidhttps://orcid.org/0000-0002-8412-5489
dc.date.accessioned2025-03-27T13:31:06Z
dc.date.available2025-03-27T13:31:06Z
dc.date.issued2021-06-08
dc.descriptionEsta es la versión aceptada del artículo. La versión registrada fue publicada por primera vez en IEEE Transactions on Circuits and Systems for Video Technology 32, n.º 5 (2022): 2574-81, está disponible en línea en el sitio web del editor: IEEE, https://doi.org/10.1109/TCSVT.2021.3087641. This is the accepted version of the article. The registered version was first published in IEEE Transactions on Circuits and Systems for Video Technology 32, No. 5 (2022): 2574-81, is available online at the publisher's website: IEEE, https://doi.org/10.1109/TCSVT.2021.3087641.
dc.description.abstractAccording to a recent Deloitte study, the COVID-19 pandemic continues to place a huge strain on the global health care sector. Covid-19 has also catalysed digital transformation across the sector for improving operational efficiencies. As a result, the amount of digitally stored patient data such as discharge letters, scan images, test results or free text entries by doctors has grown significantly. In 2020, 2314 exabytes of medical data was generated globally. This medical data does not conform to a generic structure and is mostly in the form of unstructured digitally generated or scanned paper documents stored as part of a patient’s medical reports. This unstructured data is digitised using Optical Character Recognition (OCR) process. A key challenge here is that the accuracy of the OCR process varies due to the inability of current OCR engines to correctly transcribe scanned or handwritten documents in which text may be skewed, obscured or illegible. This is compounded by the fact that processed text is comprised of specific medical terminologies that do not necessarily form part of general language lexicons. The proposed work uses a deep neural network based self-supervised pre-training technique: Robustly Optimized Bidirectional Encoder Representations from Transformers (RoBERTa) that can learn to predict hidden (masked) sections of text to fill in the gaps of non-transcribable parts of the documents being processed. Evaluating the proposed method on domain-specific datasets which include real medical documents, shows a significantly reduced word error rate demonstrating the effectiveness of the approach.en
dc.description.versionversión final
dc.identifier.citationKarthikeyan, Srinidhi, Alba García Seco De Herrera, Faiyaz Doctor, y Asim Mirza. «An OCR Post-Correction Approach Using Deep Learning for Processing Medical Reports». IEEE Transactions on Circuits and Systems for Video Technology 32, n.º 5 (2022): 2574-81. https://doi.org/10.1109/TCSVT.2021.3087641
dc.identifier.doihttps://doi.org/10.1109/TCSVT.2021.3087641
dc.identifier.issn1051-8215; e-ISSN: 1558-2205
dc.identifier.urihttps://hdl.handle.net/20.500.14468/26382
dc.journal.issue5
dc.journal.titleTransactions on Circuits and Systems for Video Technology
dc.journal.volume32
dc.language.isoen
dc.page.final2581
dc.page.initial2574
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject12 Matemáticas::1203 Ciencia de los ordenadores ::1203.17 Informática
dc.subject.keywordsOptical Character Recognition (OCR)en
dc.subject.keywordsNatural Language Processing (NLP)en
dc.subject.keywordsRobustly Optimized Bidirectional Encoder Representations from Transformers (RoBERTa)en
dc.subject.keywordsMedical documentsen
dc.titleAn OCR Post-Correction Approach Using Deep Learning for Processing Medical Reportsen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication33e1cf81-6a46-4cc6-828f-1c0f2a7e7497
relation.isAuthorOfPublication.latestForDiscovery33e1cf81-6a46-4cc6-828f-1c0f2a7e7497
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
GarciaSecoDeHerrera_Alba_OCRMedicalReports.pdf
Tamaño:
616.85 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: