Publicación: Strong convergence of the gradients for p-Laplacian problems as p → ∞
dc.contributor.author | Buccheri, Stefano | |
dc.contributor.author | Leonori, Tommaso | |
dc.contributor.author | Rossi, Julio D. | |
dc.date.accessioned | 2024-11-19T12:53:37Z | |
dc.date.available | 2024-11-19T12:53:37Z | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | In this paper we prove that the gradients of solutions to the Dirichlet problem for −∆pup = f , with f > 0, converge as p → ∞ strongly in every Lq with 1 ≤ q < ∞ to the gradient of the limit function. This convergence is sharp since a simple example in 1-d shows that there is no convergence in L∞. For a nonnegative f we obtain the same strong convergence inside the support of f . The same kind of result also holds true for the eigenvalue problem for a suitable class of domains (as balls or stadiums). | en |
dc.description.version | versión final | |
dc.identifier.citation | Stefano Buccheri, Tommaso Leonori, Julio D. Rossi, Strong convergence of the gradients for p-Laplacian problems as p → ∞, Journal of Mathematical Analysis and Applications, Volume 495, Issue 1, 2021, 124724, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2020.124724. | |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2020.124724 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24426 | |
dc.journal.issue | 1 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.journal.volume | 495 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.center | Facultad de Ciencias | |
dc.relation.department | Matemáticas Fundamentales | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.title | Strong convergence of the gradients for p-Laplacian problems as p → ∞ | es |
dc.type | journal article | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Strong converge_Leonori_T.pdf
- Tamaño:
- 268.62 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: