Publicación:
A spatio-temporal fully meshless method for hyperbolic PDEs

Cargando...
Miniatura
Fecha
2023
Autores
Flores, Jesús
García, Ángel
Negreanu, M.
Ureña, Francisco
A.M. Vargas
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
ELSEVIER
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
We introduce a meshless method derived by considering the time variable as a spatial variable without the need to extend further conditions to the solution of linear and non-linear hyperbolic PDEs. The method is based on the moving least squares method, more precisely in the Generalized Finite Difference Method which allows us to select well-conditioned stars. Several 2D and 3D examples including the time variable are shown for both regular and irregular node distributions. The results are compared with explicit GFDM both in terms of errors and execution time.
Descripción
This is the Accepted Manuscript of an article published by Elsevier in "Journal of Computational and Applied Mathematics" on 2023, available online: https://doi.org/10.1016/j.cam.2023.115194 Este es el manuscrito aceptado de un artículo publicado por Elsevier en "Journal of Computational and Applied Mathematics" en 2023, disponible en línea: https://doi.org/10.1016/j.cam.2023.115194
Categorías UNESCO
Palabras clave
generalized finite difference method, meshless method, Hyperbolic Partial Differential Equations
Citación
J. Flores, A. García, M. Negreanu, E. Salete, F. Ureña, A.M. Vargas, A spatio-temporal fully meshless method for hyperbolic PDEs, Journal of Computational and Applied Mathematics, Volume 430, 2023, 115194, ISSN 0377-0427, https://doi.org/10.1016/j.cam.2023.115194
Centro
Facultades y escuelas
Departamento
Ingeniería de Construcción y Fabricación
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra