Publicación:
Automated summary evaluation with inbuilt rubric method: An alternative to constructed responses and multiple-choice tests assessments

Cargando...
Miniatura
Fecha
2019-02-09
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Taylor and Francis Group
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Automated Summary Evaluation is proposed as an alternative to rubrics and multiple-choice tests in knowledge assessment. Inbuilt rubric is a recent Latent Semantic Analysis (LSA) method that implements rubrics in an artificially-generated semantic space. It was compared with classical LSA’s cosine-based methods assessing knowledge in a within-subjects design regarding two validation sources: a comparison with the results of rubric scores and multiple-choice tests, and the sensitivity of predicting the academic level of the test-taker. Results showed a higher reliability for inbuilt rubric (from Pearson correlation coefficient .81 to .49) over the classical LSA method (from .61 to .34) and a higher sensitivity using binary logistic regressions and effect sizes to predict academic level. It is concluded that inbuilt rubric has a qualitatively higher reliability and validity than classical LSA methods in a way that is complementary to models based on semantic networks. Thus, it is concluded that new Automated Summary Evaluation approaches such as the inbuilt rubric method can be practical in terms of reliability and efficiency, and, thus, they can offer an affordable and valuable form of knowledge assessment in different educational levels.
Descripción
Categorías UNESCO
Palabras clave
Automated Summary Evalution, Inbuilt Rubric, rubrics, summaries, multiple-choice tests
Citación
Centro
Facultades y escuelas::Facultad de Psicología
Departamento
Metodología de las Ciencias del Comportamiento
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra