Publicación:
On proper minimality in set optimization

Cargando...
Miniatura
Fecha
2023
Autores
Miglierina, Enrico
Molho, Elena
Novo, Vicente
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The aim of this paper is to extend some notions of proper minimality from vector optimization to set optimization. In particular, we focus our attention on the concepts of Henig and Geoffrion proper minimality, which are well-known in vector optimization. We introduce a generalization of both of them in set optimization with finite dimensional spaces, by considering also a special class of polyhedral ordering cone. In this framework, we prove that these two notions are equivalent, as it happens in the vector optimization context, where this property is well-known. Then, we study a characterization of these proper minimal points through nonlinear scalarization, without considering convexity hypotheses.
Descripción
The registered version of this article, first published in “Optim Lett 18, 513–528 (2024", is available online at the publisher's website: Springer, https://doi.org/10.1007/s11590-023-02005-9 La versión registrada de este artículo, publicado por primera vez en “Optim Lett 18, 513–528 (2024", está disponible en línea en el sitio web del editor: Springer, https://doi.org/10.1007/s11590-023-02005-9
Categorías UNESCO
Palabras clave
set optimization, henig proper minimality, geofrion proper minimality, nonlinear scalarization
Citación
Huerga, L., Miglierina, E., Molho, E., .; Novo, V. On proper minimality in set optimization. Optimization Letters 18, 513–528 (2024). https://doi.org/10.1007/s11590-023-02005-9
Centro
Facultad de Ciencias
Departamento
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra