Publicación:
Linked data-based conceptual modelling for recommendation : a FCA-based approach

dc.contributor.authorCastellanos, A.
dc.contributor.authorCigarrán Recuero, Juan Manuel
dc.contributor.authorGarcía Serrano, Ana Mª
dc.date.accessioned2024-05-21T13:03:25Z
dc.date.available2024-05-21T13:03:25Z
dc.date.issued2014-09-01
dc.description.abstractIn a recommendation task it is crucial to have an accurate content-based description of the users and the items consumed by them. Linked Open Data (LOD) has been demonstrated as one of the best ways of obtaining this kind of content, given its huge amount of structured information. The main question is to know how useful the LOD information is in inferring user preferences and how to obtain it. In this context, we propose a novel approach for Content Modelling and Recommendation based on Formal Concept Analysis (FCA). The approach is based in the modelling of the user and content related information, enriched with Linked Open Data, and in a new algorithm, to analyze the models and recommend new content. The framework provided by the ESWC 2014 Recommendation Challenge is used for the evaluation of the proposal. The results are within the average range of other participants, so the suitability of FCA for this scenario seems to be addressed. Nevertheless, further work has to be carried out in order to propose a refined approach for the management of LOD information.es
dc.description.versionversión original
dc.identifier.urihttps://hdl.handle.net/20.500.14468/19977
dc.language.isoen
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject.keywordslinked open data
dc.subject.keywordsrecommender systems
dc.subject.keywordscontent modelling
dc.subject.keywordsformal concept analysis
dc.titleLinked data-based conceptual modelling for recommendation : a FCA-based approaches
dc.typeconference proceedingsen
dc.typeactas de congresoes
dspace.entity.typePublication
relation.isAuthorOfPublication79b6dd2b-8f12-41dc-95ce-2a766615d5fc
relation.isAuthorOfPublication170ac137-4953-41fe-ad27-14eff0a57df5
relation.isAuthorOfPublication.latestForDiscovery79b6dd2b-8f12-41dc-95ce-2a766615d5fc
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documento.pdf
Tamaño:
357.17 KB
Formato:
Adobe Portable Document Format