Publicación:
Mixed-effects models with crossed random effects for multivariate longitudinal data

Cargando...
Miniatura
Fecha
2022-09-20
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
['Taylor and Francis Group', 'Routledge']
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Multivariate models for longitudinal data attempt to examine change in multiple variables as well as their interrelations over time. In this study, we present a Mixed-Effects Model with Crossed Random effects (MEM-CR) for individuals and variables, and compare it with two existing structural equation models for multivariate longitudinal data, namely the Curve-of-Factor-Scores (CUFFS) and the Factor-of-Curve-Scores (FOCUS). We compare these models in two types of longitudinal studies based on balanced and unbalanced data: panel studies and cohort-sequential designs, respectively. We illustrate the performance of these statistical techniques using empirical data from two studies (MHS, a panel study, and NLSY79, a cohort-sequential design) with discrete and continuous time metric modeling, respectively. We conclude that MEMs-CR provide relevant information about the developmental trajectories of individuals and variables in multivariate longitudinal data under either type of data condition. We discuss the theoretical and methodological implications of our findings.
Descripción
Categorías UNESCO
Palabras clave
mixed-effects models, CUFFS, FOCUS, longitudinal multivariate data
Citación
Centro
Facultad de Psicología
Departamento
Metodología de las Ciencias del Comportamiento
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra