Publicación:
Path integral Monte Carlo study of quantum-hard sphere solids

Cargando...
Miniatura
Fecha
2013-06-28
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Institute of Physics (AIP)
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
A path integral study of the fcc, hcp, and bcc quantum hard-sphere solids is presented. Ranges of densities within the interval of reduced de Broglie wavelengths 0.2 * 0.8 B ≤ λ ≤ have been analyzed using Monte Carlo simulations with Cao-Berne propagator. Energies, pressures, and structural quantities (pair radial correlation functions, centroid structure factors, and Steinhardt order parameters) have been computed. Also, applications of the Einstein crystal technique (J. Chem. Phys. 126, 164508 (2007)) have been made to compute the free energies of the fcc and hcp solids. Some technical points related to the latter technique are discussed, and it is shown that these calculations produce consistent results with increasing sample sizes. The fluid-solid (fcc and hcp) equilibria have been studied, thus completing prior work by this author on the fluid-fcc equilibrium. Within the accuracy attained no significant differences between the relative stabilities of the fcc and hcp lattices have been detected. The bcc case stands apart from the other two lattices, as the simulations lead either to irregular lattices (two types) that keep some traces of bcc-memory, or to spontaneous transitions to hcp-like lattices. The latter transitions make manifestly clear the potential repercussions that the quantum hard-sphere behavior can have on solid-solid equilibria at low temperatures in real systems (e.g. helium).
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultad de Ciencias
Departamento
Ciencias y Técnicas Fisicoquímicas
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
DOI