Publicación: A uniqueness result for a singular elliptic equation with gradient term
Cargando...
Fecha
2018-06-22
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Cambridge University Press
Resumen
We prove the uniqueness of a solution for a problem whose simplest model is with k ≥ 1, 0 Lz(Ω) and Ω is a bounded domain of N, N ≥ 2. So far, uniqueness results are known for k < 1, while existence holds for any k ≥ 1 and f positive in open sets compactly embedded in a neighbourhood of the boundary. We extend the uniqueness results to the k ≥ 1 case and show, with an example, that existence does not hold if f is zero near the boundary. We even deal with the uniqueness result when f is replaced by a nonlinear term λuq with 0 < q < 1 and λ > 0.
Descripción
Categorías UNESCO
Palabras clave
comparison principle, nonlinear elliptic equations, singular natural growth gradient terms
Citación
Carmona, J., Leonori, T. ; A uniqueness result for a singular elliptic equation with gradient term (2018) Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (5), pp. 983-994. http://doi.org/10.1017/S0308210518000112
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Matemáticas Fundamentales