Publicación:
Natural language processing-driven framework for the early detection of language and cognitive decline

Cargando...
Miniatura
Fecha
2023-12
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Natural Language Processing (NLP) technology has the potential to provide a non-invasive, cost-effective method using a timely intervention for detecting early-stage language and cognitive decline in individuals concerned about their memory. The proposed pre-screening language and cognition assessment model (PST-LCAM) is based on the functional linguistic model Role and Reference Grammar (RRG) to analyse and represent the structure and meaning of utterances, via a set of language production and cognition parameters. The model is trained on a Dementia TalkBank dataset with markers of cognitive decline aligned to the global deterioration scale (GDS). A hybrid approach of qualitative linguistic analysis and assessment is applied, which includes the mapping of participants´ tasks of speech utterances and words to RRG phenomena. It uses a metric-based scoring with resulting quantitative scores and qualitative indicators as pre-screening results. This model is to be deployed in a user-centred conversational assessment platform.
Descripción
Categorías UNESCO
Palabras clave
Language production, Memory concerns, Pre-screening model, Role and reference grammar, Speech assessment, Natural language processing
Citación
Kulvinder Panesar, María Beatriz Pérez Cabello de Alba; Natural language processing-driven framework for the early detection of language and cognitive decline, Language and Health, Volume 1, Issue 2, 2023, Pages 20-35, ISSN 2949-9038, https://doi.org/10.1016/j.laheal.2023.09.002
Centro
Facultades y escuelas::Facultad de Filología
Departamento
Filologías Extranjeras y sus Lingüísticas
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra