Publicación: Stationary Markov Nash equilibria for Nonzero-Sum constrained ARAT Markov Games
Fecha
2022
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Society for Industrial and Applied Mathematics
Resumen
We consider a nonzero-sum Markov game on an abstract measurable state space with compact metric action spaces. The goal of each player is to maximize his respective discounted payoff function under the condition that some constraints on a discounted payoff are satisfied.
We are interested in the existence of a Nash or noncooperative equilibrium. Under suitable conditions, which include absolute continuity of the transitions with respect to some reference probability measure, additivity of the payoffs and the transition probabilities (ARAT condition), and continuity in action of the payoff functions and the density function of the transitions of the system, we establish the existence of a constrained stationary Markov Nash equilibrium, that is, the existence of stationary Markov strategies for each of the players yielding an optimal profile within the class of all history-dependent profiles.
Descripción
Categorías UNESCO
Palabras clave
Nash equilibrium, nonzero-sum games, constrained games, ARAT games
Citación
Dufour, François and Prieto-Rumeau, Tomás, Stationary Markov Nash Equilibria for Nonzero-Sum Constrained ARAT Markov Games, SIAM Journal on Control and Optimization, Volume 60, Number 2, pp. 945-967 (2022). https://epubs.siam.org/doi/abs/10.1137/21M144565X https://doi.org/10.1137/21M144565X
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Estadística, Investigación Operativa y Cálculo Numérico