Fecha
2020-04-02
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Springer

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Twist-structure representation theorems are established for De Morgan and Kleene lattices. While the former result relies essentially on the quasivariety of De Morgan lattices being finitely generated, the representation for Kleene lattices does not and can be extended to more general algebras. In particular, one can drop the double negation identity (involutivity). The resulting class of algebras, named semi-Kleene lattices by analogy with Sankappanavar’s semi-De Morgan lattices, is shown to be representable through a twist-structure construction inspired by the Cornish–Fowler duality for Kleene lattices. Quasi-Kleene lattices, a subvariety of semi-Kleene, are also defined and investigated, showing that they are precisely the implication-free subreducts of the recently introduced class of quasi-Nelson lattices.
Descripción
This is the Accepted Manuscript of an article published by Springer in "Soft Computing, 24" 2020, available online: https://doi.org/10.1007/s00500-020-04885-w
Este es el manuscrito aceptado de un artículo publicado por Springer in "Soft Computing, 24" 2020, disponible en línea: https://doi.org/10.1007/s00500-020-04885-w
Financiado por Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), under the grant 313643/2017-2 (Bolsas de Produtivi- dade em Pesquisa - PQ).
Categorías UNESCO
Palabras clave
Citación
Rivieccio, U. Representation of De Morgan and (Semi-)Kleene Lattices. Soft Comput 24, 8685–8716 (2020). https://doi.org/10.1007/s00500-020-04885-w
Centro
Facultad de Filosofía
Departamento
Lógica, Historia y Filosofía de la Ciencia
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
Datos de investigación relacionados