Publicación:
Training deep neural networks: a static load balancing approach

Cargando...
Miniatura
Fecha
2020-03-02
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Deep neural networks are currently trained under data-parallel setups on high-performance computing (HPC) platforms, so that a replica of the full model is charged to each computational resource using non-overlapped subsets known as batches. Replicas combine the computed gradients to update their local copies at the end of each batch. However, differences in performance of resources assigned to replicas in current heterogeneous platforms induce waiting times when synchronously combining gradients, leading to an overall performance degradation. Albeit asynchronous communication of gradients has been proposed as an alternative, it suffers from the so-called staleness problem. This is due to the fact that the training in each replica is computed using a stale version of the parameters, which negatively impacts the accuracy of the resulting model. In this work, we study the application of well-known HPC static load balancing techniques to the distributed training of deep models. Our approach is assigning a different batch size to each replica, proportional to its relative computing capacity, hence minimizing the staleness problem. Our experimental results (obtained in the context of a remotely sensed hyperspectral image processing application) show that, while the classification accuracy is kept constant, the training time substantially decreases with respect to unbalanced training. This is illustrated using heterogeneous computing platforms, made up of CPUs and GPUs with different performance.
Descripción
The registered version of this article, first published in “Journal of Supercomputing 76", is available online at the publisher's website: Springer, https://doi.org/10.1007/s11227-020-03200-6 La versión registrada de este artículo, publicado por primera vez en “Journal of Supercomputing 76", está disponible en línea en el sitio web del editor: Springer, https://doi.org/10.1007/s11227-020-03200-6
Categorías UNESCO
Palabras clave
Deep learning, High-performance computing, Distributed training, Heterogeneous platforms
Citación
Moreno-Álvarez, S., Haut, J.M., Paoletti, M.E. et al. Training deep neural networks: a static load balancing approach. J Supercomput 76, 9739–9754 (2020). https://doi.org/10.1007/s11227-020-03200-6
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra