Fecha
2020-10-27
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
IEEE_ Institute of Electrical and Electronics Engineers

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Speech disorders such as dysarthria are common and frequent after suffering a stroke. Speech rehabilitation performed by a speech-language pathologist is needed to improve and recover. However, in Thailand, there is a shortage of speech-language pathologists. In this paper, we present a syllable recognition system, which can be deployable in a speech rehabilitation system to provide support to the limited speech-language pathologists available. The proposed system is based on a multimodal fusion of acoustic signal and surface electromyography (sEMG) collected from facial muscles. Multimodal data fusion is studied to improve signal collection under noisy situations while reducing the number of electrodes needed. The signals are simultaneously collected while articulating 12 Thai syllables designed for rehabilitation exercises. Several features are extracted from sEMG signals and five channels are studied. The best combination of features and channels is chosen to be fused with the mel-frequency cepstral coefficients extracted from the acoustic signal. The feature vector from each signal source is projected by spectral regression extreme learning machine and concatenated. Data from seven healthy subjects were collected for evaluation purposes. Results show that the multimodal fusion outperforms the use of a single signal source achieving up to ~ 98% of accuracy. In other words, an accuracy improvement up to 5% can be achieved when using the proposed multimodal fusion. Moreover, its low standard deviations in classification accuracy compared to those from the unimodal fusion indicate the improvement in the robustness of the syllable recognition.
Descripción
Esta es la versión aceptada del artículo. La versión registrada fue publicada por primera vez en IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 1997-2006, está disponible en línea en el sitio web del editor: IEEE Xplore, https://doi.org/10.1109/JBHI.2020.3034158. This is the accepted version of the article. The registered version was first published in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 1997-2006, is available online at the publisher's website: IEEE Xplore, https://doi.org/10.1109/JBHI.2020.3034158.
Categorías UNESCO
Palabras clave
Acoustic signal, electromyography, feature-level fusion, multimodal fusion, speech recognition
Citación
N. S. Jong, A. G. S. de Herrera and P. Phukpattaranont, "Multimodal Data Fusion of Electromyography and Acoustic Signals for Thai Syllable Recognition," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 1997-2006, June 2021, https://doi.org/10.1109/JBHI.2020.3034158.
Centro
E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra