Publicación: A benchmark for Rey-Osterrieth complex figure test automatic scoring
Cargando...
Fecha
2024-10-29
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
The Rey–Osterrieth complex figure (ROCF) test is a neuropsychological task that can be useful for early detection of cognitive decline in the elderly population. Several computer vision systems have been proposed to automate this complex analysis task, but the lack of public benchmarks does not allow a fair comparison of these systems. To advance in that direction, we present a
benchmarking framework for the automatic scoring of the ROCF test that provides: the ROCFD528 dataset, which is the first open dataset of ROCF line drawings; and experimental results obtained by several modern deep learning models, which can be used as a baseline for comparing new proposals. We evaluate different state-of-the-art convolutional neural networks (CNNs) under traditional and transfer learning paradigms. Experimental quantitative results (MAE = 3.448) indicate that a CNN specifically designed for sketches outperforms other state of the art CNN architectures when the number of examples available is limited. This benchmark can also be a paradigmatic example within the broad field of machine learning for the development of efficient and robust models for analyzing line drawings and sketches not only in classification but also in regression tasks.
Descripción
Este es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Heliyon,(2024) 10, 21, 2024, e39883, está disponible en línea en el sitio web del editor: https://doi.org/10.1016/j.heliyon.2024.e39883
This is the accepted manuscript of the article. The registered version was first published in Heliyon,(2024) 10, 21, 2024, e39883, is available online at the publisher's website: https://doi.org/10.1016/j.heliyon.2024.e39883
Categorías UNESCO
Palabras clave
Benchmark, Rey-Osterrieth complex figure scoring, Deep learning, Transfer learning, Cognitive impairment detection
Citación
Juan Guerrero-Martín, María del Carmen Díaz-Mardomingo, Sara García-Herranz, Rafael Martínez-Tomás, Mariano Rincón, A benchmark for Rey-Osterrieth complex figure test automatic scoring, Heliyon, Volume 10, Issue 21, 2024, e39883, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e39883
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial