Publication:
Doubling constants and spectral theory on graphs

Loading...
Thumbnail Image
Date
2023-02-08
Editor
Director
Advisor
Coordinator
Commentator
Reviewer
Illustrator
Access rights
info:eu-repo/semantics/openAccess
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Research Projects
Organizational Units
Journal Issue
Abstract
We study the least doubling constant among all possible doubling measures defined on a (finite or infinite) graph G. We show that this constant can be estimated from below by 1+r(AG), where r(AG) is the spectral radius of the adjacency matrix of G, and study when both quantities coincide. We also illustrate how amenability of the automorphism group of a graph can be related to finding doubling minimizers. Finally, we give a complete characterization of graphs with doubling constant smaller than 3, in the spirit of Smith graphs.
Description
The registered version of this article, first published in Discrete Mathematics, is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.disc.2023.113354
La versión registrada de este artículo, publicado por primera vez en Discrete Mathematics, está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.disc.2023.113354
UNESCO Categories
Keywords
doubling measure, infinite graph, spectral graph theory
Citation
Estibalitz Durand-Cartagena, Javier Soria, Pedro Tradacete, Doubling constants and spectral theory on graphs, Discrete Mathematics, Volume 346, Issue 6, 2023, 113354, ISSN 0012-365X, https://doi.org/10.1016/j.disc.2023.113354.
Center
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Department
Matemática Aplicada I
Research Group
Innovation Group
PHD Program
Professorship