Publicación:
Construcción de curvas algebraicas maximales sobre cuerpos finitos

dc.contributor.authorVillanueva García, José David
dc.contributor.directorIzquierdo Barrios, Milagros
dc.contributor.directorCosta González, Antonio F.
dc.date.accessioned2024-05-20T12:29:54Z
dc.date.available2024-05-20T12:29:54Z
dc.date.issued2018-10-22
dc.description.abstractEste trabajo describe la construcción de curvas maximales sobre cuerpos finitos, cubiertas por curvas hermitianas. Existe un gran interés en las curvas algebraicas sobre cuerpos finitos con muchos puntos racionales, ya que son utilizadas para la construcción de códigos correctores de errores, es decir, añadir información redundante a un mensaje con el propósito de ser recuperado en el caso de producirse errores . Explicamos las herramientas necesarias para abordar este tema, como parte de la Teoría de Anillos y Cuerpos, y analizamos el artículo On Certain Subcovers of the hermitian Curve, escrito por Arnaldo Garcá, Motoko Q. Kawakita y Shinji M, donde se detalla un método para la construcción de estas curvas maximales. Al final del trabajo, se presentan varias tablas describiendo diferentes representaciones de algunos cuerpos finitos y las tablas de los puntos racionales de las curvas maximales que hemos obtenido aplicando el método descrito en el artículo. Todas estas tablas han sido obtenidas mediante la ejecución de un programa desarrollado en JAVA, ad-hoc, el cual puede ser generalizado para cualquier cuerpo finito y la evaluación de sus puntos en cualquier curva dada.es
dc.description.abstractThis thesis surveys the construction of maximal curves over finite fields covered by Hermitian curves. Currently there is a great interest in algebraic curves over finite field which have many rational points, because they are widely used for the construction of error correcting codes, that means, adding redundant data to a message in order to be recovered even when errors are introduced. We explain the necessary tools to address this topic, like part of the Ring and Field Theory and we analyze the paper titled On Certain Subcovers of the Hermitian Curve, written by Arnaldo García, Motoko Q. Kawakita and Shinji M, where it is explained in detail one method to construct such that maximal curves. At the end of this thesis, we present some tables describing different representations of finite fields, and some tables containing the rational points of the maximal curves obtained by using the method described in that paper. All these tables have been generated through the execution of one application developed in JAVA programming language, ad-hoc, which could be generalized to get any finite field and for the evaluation of its points in any given curve.en
dc.description.versionversión final
dc.identifier.urihttps://hdl.handle.net/20.500.14468/14388
dc.language.isoes
dc.publisherUniversidad Nacional de Educación a Distancia (España). Facultad de Ciencias
dc.relation.centerFacultades y escuelas::Facultad de Ciencias
dc.relation.degreeMáster universitario en Matemáticas Avanzadas
dc.relation.departmentMatemáticas Fundamentales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject.keywordsgroup
dc.subject.keywordsideal
dc.subject.keywordsfield
dc.subject.keywordsNullstellensatz
dc.subject.keywordsvariety
dc.subject.keywordsrational function field
dc.subject.keywordscurve
dc.subject.keywordsfield extensions
dc.subject.keywordsRiemann-Roch theorem
dc.subject.keywordsramification
dc.subject.keywordscovering
dc.subject.keywordsHasse-Weils bound
dc.titleConstrucción de curvas algebraicas maximales sobre cuerpos finitoses
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Villanueva_Garcia_JoseDavid_TFM.pdf
Tamaño:
582.39 KB
Formato:
Adobe Portable Document Format