Publicación:
Comprehensive AI-Driven Privacy Risk Assessment in Mobile Apps and Social Networks

dc.contributor.authorBlanco Aza, Daniel
dc.contributor.authorRobles Gómez, Antonio
dc.contributor.authorPastor Vargas, Rafael
dc.contributor.authorTobarra Abad, María de los Llanos
dc.contributor.authorVidal Balboa, Pedro
dc.contributor.authorMéndez-Suárez, Mariano
dc.date.accessioned2025-07-03T09:44:10Z
dc.date.available2025-07-03T09:44:10Z
dc.date.issued2024-01
dc.descriptionEste artículo ha sido aceptado para su publicación en Cluster Computing, The Journal of Networks, Software Tools and Applications, Springer (JCR 2024: Q1). This article has been accepted for publication in Cluster Computing, The Journal of Networks, Software Tools and Applications, Springer (JCR 2024: Q1)
dc.description.abstractThe pervasive use of mobile applications and social networks has intensified privacy concerns due to the widespread collection, processing, and sharing of personal data. To address these challenges, we introduce SafeMountain, a novel AI-driven framework designed to systematically quantify, evaluate, and visualize privacy risks in mobile apps and social platforms, ensuring strict compliance with international regulations, particularly the General Data Protection Regulation (GDPR). SafeMountain combines static and dynamic code analyses to scrutinize real-world data handling practices and detect potential privacy breaches. It also employs advanced Natural Language Processing (NLP) techniques for automated interpretation and evaluation of privacy policies and Terms of Service. By mapping textual policy disclosures to actual app permissions and behaviors, it identifies discrepancies and highlights potential non-compliance and data misuse. The framework introduces an objective risk scoring mechanism aligned with international standards and regulatory requirements, offering a structured methodology to classify and visualize privacy risks. This risk assessment spans multiple dimensions (predictability, manageability, and disassociability) leveraging privacy engineering principles and regulatory risk factors, and uses an intuitive traffic-light system (Green, Yellow, Red) to enhance transparency and user comprehension. SafeMountain addresses major research gaps, notably the absence of standardized privacy risk scoring and comprehensive visualization tools. By delivering actionable insights into permission consistency, policy transparency, compliance gaps, and data leakage vulnerabilities, it empowers users, developers, and organizations to manage privacy risks proactively. Ultimately, SafeMountain fosters trust through more transparent and accountable data privacy practices across digital ecosystems.en
dc.description.versionversión final
dc.identifier.citationDaniel Blanco-Aza, Antonio Robles-Gómez, Rafael Pastor-Vargas, Llanos Tobarra, Pedro Vidal-Balboa, Mariano Méndez-Suárez Cluster Computing, The Journal of Networks, Software Tools and Applications, Springer (JCR 2024: Q1)
dc.identifier.issn1386-7857; e-ISSN: 1573-7543
dc.identifier.urihttps://hdl.handle.net/20.500.14468/26988
dc.journal.titleCluster Computing, The Journal of Networks, Software Tools and Applications
dc.language.isoen
dc.publisherSpringer
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentSistemas De Comunicación y Control
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.uriAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.subject12 Matemáticas::1203 Ciencia de los ordenadores ::1203.17 Informática
dc.subject.keywordsSafeMountainen
dc.subject.keywordsAutomated Privacy Risken
dc.subject.keywordsMobile Appsen
dc.subject.keywordsAI Techniquesen
dc.subject.keywordsPRISMA Methodologyen
dc.subject.keywordsData Privacyen
dc.subject.keywordsPrivacy Risk Frameworken
dc.subject.keywordsSocial Networks Privacyen
dc.titleComprehensive AI-Driven Privacy Risk Assessment in Mobile Apps and Social Networksen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication17556659-f434-4220-841d-aac35f492e62
relation.isAuthorOfPublicationf93103de-336d-47ac-886b-e2cbd425ed87
relation.isAuthorOfPublicationb584f8a3-eb01-4a43-9ed7-5075b74224ae
relation.isAuthorOfPublication.latestForDiscovery17556659-f434-4220-841d-aac35f492e62
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
BlancoAza_Daniel_Comprehensive AI-Driven Priv.pdf
Tamaño:
3.31 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: