Publicación:
Fast Evacuation Method: using an effective dynamic floor field based on efficient pedestrian assignment

Cargando...
Miniatura
Fecha
2019-12
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The problem of pedestrian evacuation can be addressed through cellular automata incorporating a floor field that indicates promising movements to pedestrians. The two main types of floor field are the static, which represents the shortest path from each cell to an exit (and is usually combined with dynamic measures such as the density or distribution of pedestrians), and the dynamic, which represents the quickest path from each cell to an exit. The second type has been widely used recently, since it gives rise to more efficient and realistic simulations of pedestrian dynamics. The goal of these two types of floor field is to minimize the travel time for each pedestrian; however, this paper tackles the evacuation problem from a different perspective: The time taken by the whole evacuation process is optimized. For that purpose, a floor field is constructed by assigning pedestrians to exits such that the estimated time for complete evacuation is minimized. An experimental evaluation is conducted to compare the new fast evacuation method with competitive methods using floor fields based on quickest paths: Flood Fill and the Fast Marching Method. The results show that the new method is effective in terms of the number of time steps for complete evacuation and efficient regarding the total simulation runtime.
Descripción
Categorías UNESCO
Palabras clave
evacuation, cellular automata, effective floor field, efficient pedestrian assignment
Citación
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra