Publicación: Pervasiveness of the p-Laplace operator under localization of fractional g-Laplace operators
Fecha
2025-06-01
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Biemdas Academic Publishers
Resumen
In this paper, we analyze the behavior of the truncated functionals as (Formula presented) for δ → 0+, where G is an Orlicz function which is assumed to be regularly varying at 0. A prototype of such function is given by G(t) = tp(1+ |log(t)|) with p ≥ 2. These kinds of functionals arise naturally in peridynamics, where long-range interactions are neglected and only those that exerted at distance smaller than δ > 0 are taken into account, i.e., the horizon δ > 0 represents the range of interactions or nonlocality. This paper is inspired by the celebrated result by Bourgain, Brezis and Mironescu, who analyzed the limit s → 1− with G(t) = tp. In particular, we prove that, under appropriate conditions, (Formula presented) for p = index(G) and an explicit constant KN,p > 0. Moreover, the converse is also true if the above localization limit exist as δ → 0+, and the Orlicz function G is a regularly varying function with index(G) = p.
Descripción
Esta es la versión aceptada para su publicación en Journal of Nonlinear and Variational Analysis 9 (2025), 373-395. La versión final publicada está disponible en la web del editor: Biemdas Academic Publishers: https://doi.org/10.23952/jnva.9.2025.3.04.
This is the accepted version for publication in Journal of Nonlinear and Variational Analysis 9 (2025), 373–395. The final published version is available on the publisher's website: Biemdas Academic Publishers: https://doi.org/10.23952/jnva.9.2025.3.04.
Categorías UNESCO
Palabras clave
Citación
Alejandro Ortega. “Pervasiveness of the p-Laplace operator under localization of fractional g-Laplace operators”, J. Nonlinear Var. Anal. 9 (2025), 373-395. https://doi.org/10.23952/jnva.9.2025.3.04
Centro
Facultad de Ciencias
Departamento
Matemáticas Fundamentales