Publicación: Redes neuronales recurrentes para predicción de posibilidad de jugada de gol
Cargando...
Fecha
2023-09
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
Resumen
Actualmente, en todos los estadios de futbol de primera y segunda división de La Liga de Fútbol Profesional, existen unas cámaras ópticas que envían en tiempo real la posición (x,y) de cada jugador y de la pelota (x,y,z) 25 veces por segundo. A partir de esa información se calculan ciertas características asociadas a cada jugador (distancia a la portería, distancia al portero, ángulo a la portería, número de jugadores rivales en el cono de visión,..) y se ha entrenado un algoritmo (regresión logística) que utilizando dichas variables predice la probabilidad de marcar un gol por cada jugador en cada uno de los momentos registrados (25 por segundo). Este modelo se utiliza en la retransmisión de televisión de los partidos para ofrecer la probabilidad de marcar un gol en las repeticiones de los disparos o remates a puerta. El actual sistema tiene algunas limitaciones como, por ejemplo, que no incorpora las jugadas a balón parado, no predice satisfactoriamente las jugadas de gol en las que sea relevante considerar la altura del balón o no contempla el contexto de la jugada previo al remate. Estas limitaciones están asociadas al diseño de las variables explicativas del modelo, las cuales se han construido a partir de la posición de los jugadores y del balón en el momento del remate a puerta y, por tanto, no tiene en cuenta la información temporal de lo acontecido en la jugada en los segundos previos al disparo. En el presente Trabajo Fin de Máster, con el objetivo de contemplar las situaciones de juego que ahora están limitadas en el algoritmo actual, se ha diseñado y entrenado un modelo alternativo basado en Redes Neuronales Recurrentes (RNN) que incorpora la información de cómo trascurre la jugada en los 5 segundos anteriores al disparo a puerta para predecir la probabilidad de que un jugador marque gol. Para utilizar la información temporal de la jugada previa a un remate a puerta, se han generado unas representaciones bidimensionales construidas a partir de los datos de la posición (coordenadas espaciales x,y) de cada jugador y de la pelota en los 125 instantes anteriores al disparo, las cuales conformarán las secuencias de elementos que alimentarán la Red Neuronal Recurrente; y para utilizar la información contenida en las relaciones espaciales de la posición de cada jugador y del balón, se ha empleado un Autoencoder Convolucional que ha permitido obtener de cada instante de juego su representación latente de baja dimensionalidad. Con el objetivo de ir confirmando que las decisiones metodológicas tomadas son acertadas, se ejecutan diferentes experimentos en los que se prueban distintas aproximaciones de manera incremental, comprobando que los experimentos que combinan las Redes Neuronales Recurrentes con los Autoencoders Convolucionales son los que ofrecen los mejores valores en las métricas de evaluación del rendimiento; unos valores además similares a los obtenidos por el algoritmo actual que ha desarrollado La Liga de Fútbol Profesional, cuando ambos sistemas se han evaluado sobre un mismo conjunto de datos.
Nowadays, in all the first and second division football stadiums of the Spanish Professional Football League, there are optical cameras that send the position (x,y) of each player and of the ball (x,y,z) in real time 25 times per second. Based on this information, certain characteristics associated with each player are calculated (distance to the goal, distance to the goalkeeper, angle to the goal, number of rival players in the cone of vision,...) and an algorithm has been trained (logistic regression) that, using these variables, predicts the probability of scoring a goal for each player in each of the moments recorded (25 per second). This model is used in the television broadcast of matches to offer the probability of scoring a goal in replays of shots on goal. The current system has some limitations, such as, for example, it does not incorporate goal plays originated with the ball stopped, it does not satisfactorily predict goal plays in which it is relevant to consider the height of the ball, or it does not take into account the context of the play prior to the shot. These limitations are associated with the design of the explanatory variables of the model, which have been built based on the position of the players and the ball at the time of the shot on goal and, therefore, do not take into account the temporal information of what happened during the play in the seconds before the shot. In this Master’s Thesis, an alternative model based on Recurrent Neural Networks has been designed and trained, which incorporates the information on how the play takes place in the last 5 seconds before the shot on goal to predict the probability that a player will score a goal, with the aim of contemplating the game situations that are now limited in the current algorithm. In order to use the temporal information of the play prior to a shot on goal, two-dimensional representations have been generated based on the positional data (spatial coordinates x,y) of each player and of the ball are generated in the 125 instants prior to the shot, which will make up the sequences of elements that will feed the Recurrent Neural Network; and to use the information contained in the spatial relations of the position of each player and the ball, a Convolutional Autoencoder has been used, which has allowed to obtain the low-dimensional latent representation of each instant of the play. With the aim of confirming that the methodological decisions made are correct, different experiments are carried out in which different approaches are tested incrementally, verifying that the experiments that combine Recurrent Neural Networks with the Convolutional Autoencoders are those that offer the best values in the performance evaluation metrics; these values are also similar to those obtained on homogeneous data sets by the current algorithm developed by the Spanish Professional Football League.
Nowadays, in all the first and second division football stadiums of the Spanish Professional Football League, there are optical cameras that send the position (x,y) of each player and of the ball (x,y,z) in real time 25 times per second. Based on this information, certain characteristics associated with each player are calculated (distance to the goal, distance to the goalkeeper, angle to the goal, number of rival players in the cone of vision,...) and an algorithm has been trained (logistic regression) that, using these variables, predicts the probability of scoring a goal for each player in each of the moments recorded (25 per second). This model is used in the television broadcast of matches to offer the probability of scoring a goal in replays of shots on goal. The current system has some limitations, such as, for example, it does not incorporate goal plays originated with the ball stopped, it does not satisfactorily predict goal plays in which it is relevant to consider the height of the ball, or it does not take into account the context of the play prior to the shot. These limitations are associated with the design of the explanatory variables of the model, which have been built based on the position of the players and the ball at the time of the shot on goal and, therefore, do not take into account the temporal information of what happened during the play in the seconds before the shot. In this Master’s Thesis, an alternative model based on Recurrent Neural Networks has been designed and trained, which incorporates the information on how the play takes place in the last 5 seconds before the shot on goal to predict the probability that a player will score a goal, with the aim of contemplating the game situations that are now limited in the current algorithm. In order to use the temporal information of the play prior to a shot on goal, two-dimensional representations have been generated based on the positional data (spatial coordinates x,y) of each player and of the ball are generated in the 125 instants prior to the shot, which will make up the sequences of elements that will feed the Recurrent Neural Network; and to use the information contained in the spatial relations of the position of each player and the ball, a Convolutional Autoencoder has been used, which has allowed to obtain the low-dimensional latent representation of each instant of the play. With the aim of confirming that the methodological decisions made are correct, different experiments are carried out in which different approaches are tested incrementally, verifying that the experiments that combine Recurrent Neural Networks with the Convolutional Autoencoders are those that offer the best values in the performance evaluation metrics; these values are also similar to those obtained on homogeneous data sets by the current algorithm developed by the Spanish Professional Football League.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial