Publicación:
Is Anisotropy Really the Cause of BERT Embeddings not being Semantic?

Fecha
2022-09-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
We conduct a set of experiments aimed to improve our understanding of the lack of semantic isometry (correspondence between the embedding and meaning spaces) of contextual word embeddings of BERT. Our empirical results show that, contrary to popular belief, the anisotropy is not the root cause of the poor performance of these contextual models’ embeddings in semantic tasks. What does affect both anisotropy and semantic isometry are a set of biased tokens, that distort the space with non semantic information. For each bias category (frequency, subword, punctuation, and case), we measure its magnitude and the effect of its removal. We show that these biases contribute but not completely explain the anisotropy and lack of semantic isometry of these models. Therefore, we hypothesise that the finding of new biases will contribute to the objective of correcting the representation degradation problem. Finally, we propose a new similarity method aimed to smooth the negative effect of biased tokens in semantic isometry and to increase the explainability of semantic similarity scores. We conduct an in depth experimentation of this method, analysing its strengths and weaknesses and propose future applications for it.
Descripción
Categorías UNESCO
Palabras clave
semantic textual similarity, sentence embeddings, transformers, natural language processing, deep learning
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
DOI