Publicación:
Miec: A Bayesian hierarchical model for the analysis of nearby young open clusters

Fecha
2021-06-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Context. The analysis of luminosity and mass distributions of young stellar clusters is essential to understanding the star-formation process. However, the gas and dust left over by this process extinct the light of the newborn stars and can severely bias both the census of cluster members and itsss luminosity distribution. Aims. We aim to develop a Bayesian methodology to infer, with minimal biases due to photometric extinction, the candidate members and magnitude distributions of embedded young stellar clusters. Methods. We improve a previously published methodology and extend its application to embedded stellar clusters. We validate the method using synthetically extincted data sets of the Pleiades cluster with varying degrees of extinction. Results. Our methodology can recover members from data sets extincted up to Av ∼ 6 mag with accuracies, true positive, and contamination rates that are better than 99%, 80%, and 9%, respectively. Missing values hamper our methodology by introducing contaminants and artifacts into the magnitude distributions. Nonetheless, these artifacts vanish through the use of informative priors in the distribution of the proper motions. Conclusions. The methodology presented here recovers, with minimal biases, the members and distributions of embedded stellar clusters from data sets with a high percentage of sources with missing values (> 96%).
Descripción
The registered version of this article, first published in Astronomy & Astrophysics (A&A), is available online at the publisher's website: EDP Sciences, https://doi.org/10.1051/0004-6361/202140282
La versión registrada de este artículo, publicado por primera vez en Astronomy & Astrophysics (A&A), está disponible en línea en el sitio web del editor: EDP Sciences, https://doi.org/10.1051/0004-6361/202140282
Categorías UNESCO
Palabras clave
proper motions, methods: statistical, open clusters and associations: general, open clusters and associations: individual: M45
Citación
Miec: A Bayesian hierarchical model for the analysis of nearby young open clusters J. Olivares, H. Bouy, L. M. Sarro, E. Moraux, A. Berihuete, P. A. B. Galli and N. Miret-Roig A&A, 649 (2021) A159 DOI: https://doi.org/10.1051/0004-6361/202140282
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra