Publicación:
Sum-Product Networks: A Survey

Cargando...
Miniatura
Fecha
2021-02-25
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
IEEE
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
A sum-product network (SPN) is a probabilistic model, based on a rooted acyclic directed graph, in which terminal nodes represent probability distributions and non-terminal nodes represent convex sums (weighted averages) and products of probability distributions. They are closely related to probabilistic graphical models, in particular to Bayesian networks with multiple context-specific independencies. Their main advantage is the possibility of building tractable models from data, i.e., models that can perform several inference tasks in time proportional to the number of edges in the graph. They are somewhat similar to neural networks and can address the same kinds of problems, such as image processing and natural language understanding. This paper offers a survey of SPNs, including their definition, the main algorithms for inference and learning from data, several applications, a brief review of software libraries, and a comparison with related models.
Descripción
Categorías UNESCO
Palabras clave
Sum-product networks, probabilistic graphical models, Bayesian networks, machine learning, deep neural networks
Citación
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra