Publicación: Estudio de las inversiones de polaridad del campo magnético terrestre mediante dos modelos: la dinamo de Robbins y una ecuación diferencial estocástica
Cargando...
Fecha
2023-06-13
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias. Departamento de Física Fundamental
Resumen
En este trabajo hemos propuesto un estudio de las inversiones de polaridad del campo geomagnético. Para ello, realizaremos simulaciones numéricas de dos modelos: La dinamo de Robbins y un fluido de Von Kármán. En el modelo de la dinamo de Robbins hemos obtenido inversiones en las corrientes eléctricas que circulan por el sistema para dos de los cinco regímenes en los que se divide su comportamiento. Esto implica que el campo magnético autoinducido y creado por dichas corrientes experimentará, asimismo, cambios en su polaridad (tal y como ocurre con el campo geomagnético). Esto nos permitirá aplicar este modelo, de forma aproximada, al problema de las inversiones de polaridades magnéticas terrestres. También hemos simulado la velocidad acimutal de un fluido de Von Kármán a través de dos ecuaciones diferenciales estocásticas, basándonos en el estudio experimental y numérico realizado por [1], [2] y [3]. En la primera ecuación aparece una distribución prácticamente simétrica entre velocidades levórigas o dextrógiras (generando un campo magnético con polaridades invertida y normal equiprobables, respectivamente). En la segunda ecuación detectamos una preferencia hacia uno de los sentidos de la velocidad. Esta última ecuación permitirá realizar una estimación aproximada del registro histórico de inversiones magnéticas, que presenta una ligera predominancia hacia polaridades magnéticas normales.
In this work, we propose a study of polarity inversions in the geomagnetic field. To do this, we will carry out numerical simulations of two models: the Robbins dynamo and a Von Kármán fluid. In the Robbins dynamo model, we have obtained inversions in the electric currents circulating through the system for two out of the five regimes into which its behavior is divided. This implies that the self-induced magnetic field created by these currents will also experience changes in polarity (similar to what happens with the geomagnetic field). This will allow us to apply this model, in an approximate way, to the problem of terrestrial magnetic polarity inversions. We have also simulated the azimuthal velocity of a Von Kármán fluid using two stochastic differential equations, based on the experimental and numerical study conducted by [1], [2] and [3]. In the first equation, there is a nearly symmetrical distribution between counterclockwise and clockwise velocities (generating a magnetic field with inverted and normal polarities equiprobable, respectively). In the second equation, we detect a preference towards one direction of the velocity. This latter equation will allow for an approximate estimation of the historical record of magnetic inversions, which shows a slight predominance towards normal magnetic polarities.
In this work, we propose a study of polarity inversions in the geomagnetic field. To do this, we will carry out numerical simulations of two models: the Robbins dynamo and a Von Kármán fluid. In the Robbins dynamo model, we have obtained inversions in the electric currents circulating through the system for two out of the five regimes into which its behavior is divided. This implies that the self-induced magnetic field created by these currents will also experience changes in polarity (similar to what happens with the geomagnetic field). This will allow us to apply this model, in an approximate way, to the problem of terrestrial magnetic polarity inversions. We have also simulated the azimuthal velocity of a Von Kármán fluid using two stochastic differential equations, based on the experimental and numerical study conducted by [1], [2] and [3]. In the first equation, there is a nearly symmetrical distribution between counterclockwise and clockwise velocities (generating a magnetic field with inverted and normal polarities equiprobable, respectively). In the second equation, we detect a preference towards one direction of the velocity. This latter equation will allow for an approximate estimation of the historical record of magnetic inversions, which shows a slight predominance towards normal magnetic polarities.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Física Fundamental