Publicación:
Conflict and Reconciliation Processes between Affective/Social Robots and Humans

dc.contributor.authorÁlvarez Pardo, Guillermo
dc.contributor.authorFábregas Acosta, Ernesto
dc.date.accessioned2024-05-20T11:37:56Z
dc.date.available2024-05-20T11:37:56Z
dc.date.issued2023-09-07
dc.description.abstractMost research on affective computing relates to recognizing and classifying emotions, usually through facial or body expressions, linguistics, electroencephalograms or other biosignals. A variety of authors have pointed out that for social and affective robots to establish effective, deep and durable bonds with humans, they must emulate human interactions as closely as possible; however, there are aspects of human behavior and interactions, like disputes and resolutions, that have been left aside from the design of such robots. This article introduces a non-intrusive, low-cost system that allows robots to recognize and simulate affections and personality on the basis of human-robot actions, while also allowing robots to recognize and shape the human’s character and the nature of their relationship. It provides a system for robots to trigger and carry out conflict and reconciliation processes with humans.en
dc.description.versionversión final
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2023.3312687
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/20.500.14468/12337
dc.journal.titleIEEE Access
dc.journal.volume99
dc.language.isoen
dc.publisherIEEE Access
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentInformática y Automática
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es
dc.subject.keywordsaffective computing
dc.subject.keywordssocial affective robots
dc.subject.keywordsautomatic learning
dc.subject.keywordsartificial intelligence
dc.subject.keywordsconflict resolution
dc.titleConflict and Reconciliation Processes between Affective/Social Robots and Humanses
dc.typejournal articleen
dc.typeartículoes
dspace.entity.typePublication
relation.isAuthorOfPublication04fadb3a-7297-4110-ae10-c2397dd66eb4
relation.isAuthorOfPublication.latestForDiscovery04fadb3a-7297-4110-ae10-c2397dd66eb4
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
FINAL_Article_Sep2_2023_CRP_IEEE_Access.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format