Publicación:
A Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior From Multiple Users in Real-World Learning Scenarios

dc.contributor.authorSalmeron Majadas, Sergio
dc.contributor.authorBaker, Ryan S.
dc.contributor.authorSantos, Olga C.
dc.contributor.authorGonzález Boticario, Jesús
dc.contributor.orcidhttps://orcid.org/0000-0002-0544-0887
dc.contributor.orcidhttps://orcid.org/0000-0002-3051-3232
dc.contributor.orcidhttps://orcid.org/0000-0002-9281-4209
dc.date.accessioned2025-01-10T14:14:17Z
dc.date.available2025-01-10T14:14:17Z
dc.date.issued2018
dc.descriptionThe registered version of this article, first published in “IEEE Access, vol. 6, 2018", is available online at the publisher's website: Browse Journals & Magazines, https://doi.org/10.1109/ACCESS.2018.2854966 La versión registrada de este artículo, publicado por primera vez en “IEEE Access, vol. 6, 2018", está disponible en línea en el sitio web del editor: Browse Journals & Magazines, https://doi.org/10.1109/ACCESS.2018.2854966
dc.description.abstractThere is strong evidence that emotions influence the learning process. For this reason, we explore the relevance of individual and general mouse and keyboard interaction patterns in real-world settings while learners perform free text tasks. To this end, we have modeled users' mouse movements and keystroke dynamics with data mining techniques, building on previous related research and extending it in terms of some critical modeling issues that may have an impact on detection results. Inspired by practice in affective computing where physiological sensors are used, we argue for the creation of an interaction baseline model, as a reference point in the way how learners interact with the keyboard and mouse. To make the proposed affective model feasible, we have adopted a simplified 2-D self-labeling approach for labeling the users' affective state. Our approach to affect detection improves results when there is a small amount of data instances available and does not require additional affect-oriented tasks from the learners. Specifically, learners are only asked to self-reflect their emotional state after finishing the tasks and immediately selecting two values in the affect scale. The approach we have followed aims to distill two types of interaction patterns: 1) within-subject patterns (from a single participant) and 2) between-subject patterns (across all participants). Doing this, we aim to combine both the approaches as modeling factors, thus taking advantage of individual and general interaction patterns to predict affect.en
dc.description.versionversión publicada
dc.identifier.citationS. Salmeron-Majadas, R. S. Baker, O. C. Santos and J. G. Boticario, "A Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior From Multiple Users in Real-World Learning Scenarios," in IEEE Access, vol. 6, pp. 39154-39179, 2018, doi: 10.1109/ACCESS.2018.2854966
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2018.2854966
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/20.500.14468/25195
dc.journal.titleIEEE Access
dc.journal.volume6
dc.language.isoen
dc.page.final39179
dc.page.initial39154
dc.publisherBrowse Journals & Magazines
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentIngeniería de Software y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject.keywordsKeyboardses
dc.subject.keywordsMicees
dc.subject.keywordsData modelses
dc.subject.keywordsTask analysises
dc.subject.keywordsComputational modelinges
dc.subject.keywordsData mininges
dc.subject.keywordsBrain modelinges
dc.titleA Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior From Multiple Users in Real-World Learning Scenariosen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublicationdf3339e5-d482-4ea3-85ad-3a554c2ba075
relation.isAuthorOfPublicatione067a1f1-6036-4974-a582-85b556587d18
relation.isAuthorOfPublication.latestForDiscoverye067a1f1-6036-4974-a582-85b556587d18
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Salmeron etal 2018 A_Machine_Learning.pdf
Tamaño:
9.45 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: