Publicación: Quantum projections on conceptual subspaces
Cargando...
Fecha
2023-12
Autores
Martínez Mingo, Alejandro
Jorge Botana, Guillermo de
Olmos Albacete, Ricardo
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
One of the main challenges of cognitive science is to explain the representation of conceptual knowledge and the mechanisms involved in evaluating the similarities between these representations. Theories that attempt to explain this phenomenon should account for the fact that conceptual knowledge is not static. In line with this thinking, many studies suggest that the representation of a concept changes depending on context. Traditionally, concepts have been studied as vectors within a geometric space, sometimes called Semantic-Vector Space Models (S-VSMs). However, S-VSMs have certain limitations in emulating human biases or context effects when the similarity of concepts is judged. Such limitations are related to the use of a classical geometric approach that represents a concept as a point in space. Recently, some theories have proposed the use of sequential projections of subspaces based on Quantum Probability Theory (Busemeyer and Bruza, 2012; Pothos et al., 2013). They argue that this theoretical approach may facilitate accounting for human similarity biases and context effects in a more natural way. More specifically, Pothos and Busemeyer (2011) proposed the Quantum Similarity Model (QSM) to determine expectation in conceptual spaces in a non-monotonic logic frame. To the best of our knowledge, previous data-driven studies have used the QSM subspaces in a unidimensional way. In this paper, we present a data-driven method to generate these conceptual subspaces in a multidimensional manner using a traditional S-VSM. We present an illustration of the method taking Tversky’s classical examples to explain the effects of Asymmetry, Triangular Inequality, and the Diagnosticity by means of sequential projections of those conceptual subspaces.
Descripción
Categorías UNESCO
Palabras clave
Quantum similarity model, Semantic-vector space models, Computational linguistics, Similarity
Citación
Centro
Facultades y escuelas::Facultad de Psicología
Departamento
Metodología de las Ciencias del Comportamiento