Publicación: A new video segmentation method of moving objects based on blob-level knowledge
Cargando...
Fecha
2008-02-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
Variants of the background subtraction method are broadly used for the detection of moving objects in video sequences in different applications. In this work we propose a new approach to the background subtraction method which operates in the colour space and manages the colour information in the segmentation process to detect and eliminate noise. This new method is combined with blob-level knowledge associated with different types of blobs that may appear in the foreground. The idea is to process each pixel differently according to the category to which it belongs: real moving objects, shadows, ghosts, reflections, fluctuation or background noise. Thus, the foreground resulting from processing each image frame is refined selectively, applying at each instant the appropriate operator according to the type of noise blob we wish to eliminate. The approach proposed is adaptive, because it allows both the background model and threshold model to be updated. On the one hand, the results obtained confirm the robustness of the method proposed in a wide range of different sequences and, on the other hand, these results underline the importance of handling three colour components in the segmentation process rather than just the one grey-level component.
Descripción
Categorías UNESCO
Palabras clave
Background subtraction, reflection detection, shadow detection, ghost detection, permanence memory, blob-level knowledge
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial