Publicación:
On the consistency of the matrix equation X^TAX=B when B is symmetric: the case where CFC(A) include skew-symmetric blocks

Cargando...
Miniatura
Fecha
2022-03-17
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In this paper, which is a follow-up to [A. Borobia, R. Canogar, F. De Ter´an, Mediterr. J. Math. 18, 40 (2021)], we provide a necessary and sufficient condition for the matrix equation XJAX “ B to be consistent when B is symmetric. The condition depends on the canonical form for congruence of the matrix A, and is proved to be necessary for all matrices A, and sufficient for most of them. This result improves the main one in the previous paper, since the condition is stronger than the one in that reference, and the sufficiency is guaranteed for a larger set of matrices (namely, those whose canonical form for congruence, CFC(A), includes skew-symmetric blocks).
Descripción
Categorías UNESCO
Palabras clave
Matrix equation, transpose, congruence, J-Riccati equation, Canonical Form for Congruence, symmetric matrix, bilinear form
Citación
Borobia, A., Canogar, R. & De Terán, F. On the consistency of the matrix equation when B is symmetric: the case where CFC(A) includes skew-symmetric blocks. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 61 (2023). https://doi.org/10.1007/s13398-023-01391-0
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Matemáticas Fundamentales
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra