Publicación: Analytical Communication Performance Models as a metric in the partitioning of data-parallel kernels on heterogeneous platforms
Cargando...
Fecha
2019
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
Data partitioning on heterogeneous HPC platforms is formulated as an optimization problem. The algorithm departs from the communication performance models of the processes representing their speeds and outputs a data tiling that minimizes the communication cost. Traditionally, communication volume is the metric used to guide the partitioning, but such metric is unable to capture the complexities introduced by uneven communication channels and the variety of patterns in the kernel communications. We discuss Analytical Communication Performance Models as a new metric in partitioning algorithms. They have not been considered in the past because of two reasons: prediction inaccuracy and lack of tools to automatically build and solve kernel communication formal expressions. We show how communication performance models fit the specific kernel and platform, and we present results that equal or even improve previous volume-based strategies.
Descripción
The registered version of this article, first published in “The Journal of Supercomputing, 75", is available online at the publisher's website: Springer, https://doi.org/10.1007/s11227-018-2724-8
La versión registrada de este artículo, publicado por primera vez en “The Journal of Supercomputing, 75", está disponible en línea en el sitio web del editor: Springer, https://doi.org/10.1007/s11227-018-2724-8
Categorías UNESCO
Palabras clave
partitioning algorithms, communication performance models, communication optimization, hybrid data-parallel kernels
Citación
Juan A. Rico-Gallego, Juan C. Díaz-Martín, Carmen Calvo-Jurado, Sergio Moreno-Álvarez & Juan L. García-Zapata. "Analytical Communication Performance Models as a metric in the partitioning of data-parallel kernels on heterogeneous platforms". The Journal of Supercomputing, 75, 13 December 2018, 1654–1669
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos