No hay miniatura disponible
Fecha
0001-08-20
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The Dzhanibekov effect is the phenomenon by which triaxial objects like a spinning wing bolt may continuously flip their rotational axis when initially spinning around the intermediate axis of inertia. This effect is closely related to the Tennis Racket theorem that establishes that the intermediate axis of inertia is unstable. Over time, however, dissipation ensures that a torque free spinning body will eventually rotate around its major axis, in a process called precession relaxation, which counteracts the Dzhanibekov effect. Euler’s equations for a rigid body effectively describe the Dzhanibekov effect, but cannot account for the precession relaxation effect. A dissipative generalization of Euler’s equations displays two dissipative mechanisms: orientational diffusion and viscoelasticity. Here we show through numerical simulations of the dissipative Euler’s equations that orientational diffusion, rather than viscoelasticity, primarily drives precession relaxation and effectively suppresses the Dzhanibekov effect.
Descripción
This is a Submitted Manuscript of an article published by Elsevier in "European Journal of Mechanics - A/Solids, Volume 106, 2024", available at: https://doi.org/10.1016/j.euromechsol.2024.105298
Categorías UNESCO
Palabras clave
Dzhanibekov efecto, Relación de precesión, Viscoelasticidad, Ecuaciones de Euler, disipative, Cuerpo cuasirigido
Citación
J. A. de la Torre, Pep Español, Internal dissipation in the Dzhanibekov effect, European Journal of Mechanics - A/Solids, Volume 106, 2024, article 105298, ISSN 0997-7538, https://doi.org/10.1016/j.euromechsol.2024.105298
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
FÍSICA FUNDAMENTAL
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra