Publicación: SOCAIRE: Forecasting and monitoring urban air quality in Madrid
dc.contributor.author | Medrano, Rodrigo de | |
dc.contributor.author | Buen Remiro, Víctor de | |
dc.contributor.author | Aznarte Mellado, José Luis | |
dc.contributor.orcid | https://orcid.org/0000-0002-4428-7053 | |
dc.date.accessioned | 2024-10-28T10:25:38Z | |
dc.date.available | 2024-10-28T10:25:38Z | |
dc.date.issued | 2021 | |
dc.description | The registered version of this article, first published in “Environmental Modelling & Software, vol. 143", is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.envsoft.2021.105084 La versión registrada de este artículo, publicado por primera vez en “Environmental Modelling & Software, vol. 143", está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.envsoft.2021.105084 | |
dc.description.abstract | Air quality has become a central issue in public health and urban planning management, due to the proven adverse effects of airborne pollutants. Considering temporary mobility restriction measures used to face low air quality episodes, the capability of foreseeing pollutant concentrations is crucial. We thus present SOCAIRE (Spanish acronim for “operational forecast system for air quality”), an operational tool based on a Bayesian and spatiotemporal ensemble of neural and statistical nested models. SOCAIRE integrates endogenous and exogenous information in order to predict and monitor future distributions of the concentration for the main pollutants. It focuses on modeling available components which affect air quality: past concentrations of pollutants, human activity, and numerical pollution and weather predictions. This tool is currently in operation in Madrid, producing daily air quality predictions for the next 48 h and anticipating the probability of the activation of the measures included in the city's official air quality NO2 protocols through probabilistic inferences about compound events. | en |
dc.description.version | versión original | |
dc.identifier.citation | Rodrigo de Medrano, Víctor de Buen Remiro, José L. Aznarte, SOCAIRE: Forecasting and monitoring urban air quality in Madrid, Environmental Modelling & Software, Volume 143, 2021, 105084, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2021.105084 | |
dc.identifier.doi | https://doi.org/10.1016/j.envsoft.2021.105084 | |
dc.identifier.issn | 1364-8152 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24136 | |
dc.journal.issue | 105084 | |
dc.journal.title | Environmental Modelling & Software | |
dc.journal.volume | 143 | |
dc.language.iso | en | |
dc.publisher | ELSEVIER | |
dc.relation.center | E.T.S. de Ingeniería Informática | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 33 Ciencias Tecnológicas | |
dc.subject.keywords | Air quality | en |
dc.subject.keywords | Spatio-temporal series | en |
dc.subject.keywords | Statistical modeling | en |
dc.subject.keywords | Neural networks | en |
dc.title | SOCAIRE: Forecasting and monitoring urban air quality in Madrid | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 055e077d-5311-4756-a605-78fcee32b633 | |
relation.isAuthorOfPublication.latestForDiscovery | 055e077d-5311-4756-a605-78fcee32b633 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- AznarteMellado_JoséLuis_SOCAIRE.pdf
- Tamaño:
- 8.6 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: