Publicación: New notions of uniformity and homogeneity of Cosserat media
Cargando...
Fecha
2023
Autores
León, Manuel de
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
AIP Publising
Resumen
In this paper, we study internal properties of Cosserat media. In fact, by using groupoids and smooth distributions, we obtain three canonical equations. The non-holonomic material equation for Cosserat media characterizes the uniformity of the material. The holonomic material equation for Cosserat media permits us to study when a Cosserat material is a second-grade material. It is remarkable that these two equations also provide us a unique and maximal division of the Cosserat medium into uniform and second-grade parts, respectively. Finally, we present a proper definition of homogeneity of the Cosserat medium, which does not need to assume uniformity. Thus, the homogeneity equation for Cosserat media characterizes this notion of homogeneity.
Descripción
Categorías UNESCO
Palabras clave
Continuum mechanics, Granular materials, Lie algebras, Differential geometry, Differential topology, Algebraic structures, General topology, Group theory
Citación
Centro
Facultad de Ciencias
Departamento
Matemáticas Fundamentales