Publicación:
Deep reinforcement learning for urban traffic light control

dc.contributor.authorCasas, Noé
dc.date.accessioned2024-05-20T12:24:21Z
dc.date.available2024-05-20T12:24:21Z
dc.date.issued2017-03-06
dc.description.abstractTraffic light timing optimization is still an active line of research despite the wealth of scientific literature on the topic, and the problem remains unsolved for any non-toy scenario. One of the key issues with traffic light optimization is the large scale of the input information that is available for the controlling agent, namely all the traffic data that is continually sampled by the traffic detectors that cover the urban network. This issue has in the past forced researchers to focus on agents that work on localized parts of the traffic network, typically on individual intersections, and to coordinate every individual agent in a multi-agent setup. In order to overcome the large scale of the available state information, we propose to rely on the ability of deep Learning approaches to handle large input spaces, in the form of Deep Deterministic Policy Gradient (DDPG) algorithm. We performed several experiments with a range of models, from the very simple one (one intersection) to the more complex one (a big city section).en
dc.description.versionversión final
dc.identifier.urihttps://hdl.handle.net/20.500.14468/14159
dc.language.isoen
dc.publisherUniversidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
dc.relation.centerFacultades y escuelas::E.T.S. de Ingeniería Informática
dc.relation.degreeMáster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones
dc.relation.departmentInteligencia Artificial
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.titleDeep reinforcement learning for urban traffic light controles
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Casas_Manzanares_Noe_TFM.pdf
Tamaño:
2.95 MB
Formato:
Adobe Portable Document Format