Publicación:
Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth

Cargando...
Miniatura
Fecha
2019-05
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Institute of Mathematical Sciences (AIMS)
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In this paper we deal with uniqueness of unbounded solutions to the following problem (formula pergented) where QT = (0, T) × Ω is the parabolic cylinder, Ω is an open subset of RN, N ≥ 2, 1 < p < N, and the right hand side H(t, x, ξ): (0, T) × Ω × RN → R exhibits a superlinear growth with respect to the gradient term. © 2019 American Institute of Mathematical Sciences.
Descripción
Categorías UNESCO
Palabras clave
Uniqueness, nonlinear parabolic equations, unbounded solutions, nonlinear lower order terms
Citación
Tommaso Leonori, Martina Magliocca. Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth. Communications on Pure and Applied Analysis, 2019, 18(6): 2923-2960. doi: 10.3934/cpaa.2019131
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Matemáticas Fundamentales
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra